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Preface 

This book is the second volume of a two-volume set covering the architec­
ture of high performance computers. The division of material between 
the two volumes has been devised so that Volume I essentially deals with 
architectures in which parallelism is used to attain high performance but 
is hidden from the programmer , whereas Volume 11 deals with machines 
which are explicitly parallel in nature. Volume I therefore describes archi­
tectural techniques that can be used, and indeed have become widespread, 
in the design of individual high performance processors, whereas this volume 
concentrates on the architecture of systems in which a number of proces­
sors operate in concert to achieve high performance. The high performance 
structures described in Volume I are naturally applicable to the design of the 
elements within parallel processors. Volume 11 represents a historical pro­
gression from Volume I, describing some architectures and machines which 
have evolved recently and could be described as 'state-of-the-art'. 

Computer architecture is an extensive subject, with a large body of 
mostly descriptive literature, and any treatment of the subject is necessar­
ily incomplete. There are many high performance architectures, both on 
the market and within research environments, far too many to cover in a 
student text. We have attempted to extract the fundamental principles 
of high performance architectures and set them in perspective with case 
studies. Where possible we have used commercially available machines as 
our examples. The two volumes of this book are designed to accompany 
undergraduate courses in computer architecture, and constitute a core of 
material presented in third and fourth year courses in the Computer Science 
Department at Edinburgh University. 

The authors would like to thank Duncan Roweth for vetting the section 
which describes the Meiko Computing Surface, as weIl as the colleagues and 
friends who read and commented on other parts of the manuscript. 

Vlll 

Roland Ibbett 
Nigel Topharn 
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1 Introduction 

In volume I of this two-volume set we examined the architectural tech­
niques that have been used to produce high performance computers. This 
included techniques to maximise processor performancej for example, in­
struction pipelines and parallel functional units. It also included techniques 
to maximise the throughput, and minimise the latency, of storage struc­
tures; for example, interleaving and caching respectively. We saw how these 
design techniques can be brought together in the form of vector processors 
in order to provide a platform for very high performance numerical process­
ing. However, all the machines considered in volume I have something in 
commonj they operate within a relatively conventional programming model, 
and this means that high-Ievellanguage programs written for one high per­
formance architecture will work equally weIl on another, with little or no 
modification. In this book we are concerned with architectures for which 
this does not necessarily hold true, and for which new languages and new 
application algorithms are required. This naturally implies a greater overall 
design effort, but in many cases this is outweighed by the resulting gain in 
performance. The architectures dealt with by this book all embody some 
form of parallel processing capability that cannot be hidden from the user's 
view of the machine, at least not without the aid of compilers that are 
able to decompose a conventional program into fragments of parallel code 
automatically. 

One question which must be answered is 'why do we need to consider 
new architectures when existing architectures have served so weIl in the 
past?'. There are in fact several good reasons why we should consider new 
architectures, and as always they stern from changes in the cost and perfor­
mance characteristics of modern technology. Perhaps most importantly, the 
cost of replicating a piece of logic, as opposed to making it work faster, has 
fallen dramatically. This is due to advances in micro-fabrication technology. 
Thus it has become cheaper to build a system using a hundred micropro­
cessors than to build a single-processor system that is one hundred times 
more powerful than a single microprocessor. This follows from two related 
facts: firstly, the cost of each transistor on a silicon die has fallen continu­
ously since integrated circuits were developed, and secondly, the number of 
transistors that can be squeezed onto a single silicon die has also increased. 
This has now reached the point where complete processors, using many of 
the techniques found in volume I, can be fabricated as a single device. For 

1 
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Exploiting Spatial 
Parallelism 

Figure 1.1 A spatially-parallel structure 

example, the Motorola,M88100 microprocessor supports a number of par­
allel functional units and has a Score board to deal with data dependencies 
as in the CDC 6600 and 7600 mach in es. 

It is anticipated that as a result of the availability of high performance 
single-chip processors, and the ever-increasing demand for more powerful 
computing systems, the market for parallel processors will increase dramat­
ically during the late 1980s. For example, one market prediction [JD86] 
states that the value of sales of parallel processors in the UK alone is likely 
to increase by 500% in the period 1988-89. The supercomputer market, 
traditionally the principal beneficiary of research into high performance 
computer systems, is expected to be eclipsed by the expanding market for 
parallel workstations and parallel symbolic processors as small-scale parallel 
systems become more widely available. 

1.1 Parallel hardware structures 

All computing systems are constructed from interconnected components, 
and depending on the level of abstraction at which a system is viewed, 
these components could be transistors, gates, registers, arithmetic units, 
memories, or even complete processors. At all levels of abstraction there 
are two fundamental ways in wh ich components can be composed to create 
parallel computing structures. 

Perhaps the simplest way to introduce parallelism into a computing 
structure is to replicate a component n times, as shown in figure 1.1. To 
exploit this form of parallelism, the units of information processed by the 
original (non-parallel) component must be partitionable. In other words 
the task space must be parallelised. For this reason this form of parallel-
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Exploiting Temporal Parallelism 

X,--LH5= . =0= · 
Figure 1.1! A tempo rally-parallel structure 

ism is known as spatial parallelism. A typical example from the sphere of 
ordinary human activity is the familiar row of checkout desks one finds in 
supermarkets. 

The other fundamental way of introducing parallelism into a processing 
activity is to partition the processing activity into a number of steps, as 
shown in figure 1.2, which when applied sequentially to each unit of infor­
mation performs the original task. In other words, the task is partitioned 
in time, with each step of the task being applied to aseparate unit of in­
formation. For this reason this form of parallelism is known as temporal 
parallelism. A typical example is 'assembly line' manufacturing. The appli­
cation of temporal parallelism in computing pro duces pipelined structures 
(see volume I, chapter 4). 

The amount of parallelism that can be exploited using temporal parallel­
ism depends on the divisibility of the task being parallelised, whereas the 
amount that can be exploited using spatial parallelism depends only on the 
number of independent tasks. 

1.2 Taxonomy of parallel architectures 

There have been several attempts to devise classification schemes for com­
puter architectures, particularly parallel architectures, none of which are 
entirely adequate. Probably the most widely accepted classification is that 
suggested by M. J. Flynn [Fly72]. Flynn's classification is based empirically 
on the multiplicity, or otherwise, of instruction and data streams. This leads 
to four classifications. 

1. SISD - single instruction stream, single data stream. 

2. SIMD - single instruction stream, multiple data stream. 

3. MISD - multiple instruction stream, single data stream. 

4. MIMD - multiple instruction stream, multiple data stream. 
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SISD machines employ no explicit parallelism, and within this classification 
fall machines such as the IBM System/360 and /370 and the CDC 6600 and 
7600, even though these mach in es exploit small-scale parallelism. SIMD 
machines are those in which a single stream of instructions operates on a 
stream of data containing a large, and variable, number of data items. This 
normally includes array processors, such as those described in chapter 4, 
as weH as vector machines such as the CRAY-l and the CYBER 205 (see 
volume I, chapters 7 and 9 respectively). MISD machines are somewhat elu­
sive, and the absence of machines in this category would seem to indicate 
that Flynn's classification is not particularly effective. MIMD machines are 
those machines in which there is more than one stream of independent in­
structions. This includes all multiprocessor systems, such as those described 
in chapters 7 and 8. Flynn's classification is used throughout this text. 

Other classification schemes include PMS [SBN82] and Hockney and 
Jesshope's 'structural notation' [HJ81], both of which attempt to describe 
the physical structure of a machine in a similar style to a chemical formula. 
These classification schemes are little used, and at present Flynn's classi­
lication in the only widely accepted shorthand notation for distinguishing 
between broad classes of parallel machine. 

1.3 Summary of the book 

To study high performance parallel architectures requires a treatment of 
four primary aspects of system design; hardware structures, parallel lan­
guage design, applications (algorithms), and performance (both analytical 
and empirical). In this book we attempt to address these issues in an inte­
grated way for each major type of parallel architecture. 

This book is concerned principally with two general types of architec­
ture: SIMD-array processors and MIMD multiprocessors. Chapters 2, 4 
and 5 deal with the former, and chapters 6 to 9 deal with the latter. Chap­
ter 3 deals with interconnection structures for parallel machines, and is 
relevant to all forms of parallel machine. 

In chapter 2 we examine issues in the design and performance of SIMD­
array processors, and briefty trace the historical evolution of SIMD ma­
chines. Chapter 4 describes the the architecture of two example SIMD ma­
chines in detail: the ICL DAP and the TMC Connection Machine. Some of 
the principles and practice of programming languages for SIMD machines 
are outlined in chapter 5, and one example application for each of the ma­
chines described in chapter 4 is presented. Chapter 3 describes the principles 
of processor interconnection networks; their taxonomy, their structure, and 
their routing mechanisms. The material in chapter 3 should be consulted 
be fore studying the array machines described in chapter 4, and before con­
sidering the MIMD systems in chapters 7 and 8. 
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In chapter 6 the design principles of multiprocessor architecture, and 
their performance characteristics, are outlined. This chapter includes some 
material on general design issues, such as granularity, extensibility, reliabil­
ity, and the basic ways in which processors can cooperate on a single task. 
We also describe a simple analytical model for the performance of multi­
processor systems. Chapters 7 and 8 are each devoted to one of the two 
major types of multiprocessor architecture: shared-memory systems and 
message-passing systems. Within each of these chapters we characterise 
the respective architectural types in terms of the interconnection mechanism 
between processors. For example, in chapter 7 we divide shared-memory 
machines into those connected by cheap limited-bandwidth buses, expen­
sive high-bandwidth cross-bar switches, and multi-stage networks - which 
are essentially a compromise between busses and cross-bars. Chapter 8 is 
divided into those systems which use smaH-degree static networks, typified 
by transputer-based systems, and those which rely on static networks of 
n-th degree, typified by hypercube-based multiprocessors. 

It is hoped that through the analysis and discussion of the architectural 
examples in this book we are able to explain the need for, and the evolution 
of, the parallel architectures of today, as weH as introduce some of the 
problems to be solved by the computer architects of tomorrow. 
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In his Turing Lecture entitled "Can Programming be Liberated from the von 
Neumann Style", Backus [Bac78] introduced the term von Neumann bot­
tleneck. This refers to the fundamental speed limitation of machines which 
have physically separate processing and storage units. In such machines the 
link between the two parts creates a bottleneck, defining an upper-bound 
on performance. Furthermore, this two-part design pro duces extremely 
inefficient architectures when the metric of efficiency is the utilisation of 
individual switching elements. 

Let us consider a conventional 'von Neumann' architecture consisting 
of a single processor and an associated memory. This processor-memory 
configuration is constructed from a technology which permits machine in­
structions to be executed at a frequency of /J instructions per second. Let 
us ass urne that there are p switching devices (typically transistors) within 
the processor, and that every tI = 1/ /J seconds a proportion r {o < r < I} 
of these devices switch, and thus perform some useful work. Let us also as­
sume that the basic architecture of this machine does not alter as advances 
are made in device technology to increase the performance of the proces~ 
sor. Then of course r will remain constant. The memory contains m bits, 
and empirically the value of m is linearly dependent on the speed of the 
processor, /J. Hence we can say that m = kdI, for so me system constant 
k l . This means that if each bit of memory requires k2 switching devices 
(we ignore memory decode logic for simplicity), then the total number of 
devices in the machine is p + k2m. Since each instruction activates 0(1) 
bits of memory, then for some system constant k3 , the mean utilisation of 
devices, Ud, is 

(2.1) 

Ifwe introduce constants a = r+k2ks/p and b = k1k2/p the above equation 
can be re-written as 

This is a familiar form for utilisation equations (see equations 4.3 and 10.3 
in volume I, and equation 6.2 in this volume) and immediately indicates that 
utilisation decreases monotonically with increasing /J. In other words, as 
the machine becomes more powerful the utilisation of individual switching 
devices falls towards an asymptotic value of zero; not exactly a favourable 

6 
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relationship. Some architects accept this as the price which must be paid for 
more powerful systems. Others see it as an argument in favour of alternative 
architectures, claiming that a more sensible organisation is one in wh ich the 
ratio of processing power to memory size is fixed, and an increase in memory 
automatically produces an increase in processing performance. This is the 
approach adopted by SIMD-array architectures. In these architectures the 
units of processing are atomic processor-memory 'cells', and increments 
in performance are achieved by replicating complete cells rather than by 
simply using faster technology. 

In volume I the use of pipelining and parallel functional units is dis­
cussed at length. Whilst these techniques are useful, and have their place 
in the standard repertoire of high performance techniques, the additional 
performance they offer is li mi ted by the quantity of parallelism they can 
extract from a single stream of scalar instructions. For example, parallel 
functional units rely on the presence of independent operations within a 
single stream of scalar instructions in order to extract low-Ievel parallelism 
automatically. Vector processors are able to exploit the parallelism in vector 
and matrix computations, but only to an extent determined by the degree of 
pipelining. In chapter 4 of volume I it was shown that there is an optimum 
degree of pipelining for every function, and hence the performance gained 
as a result of pipelining alone is fixed. These limitations are not present 
in array machines, since parallel operations within each computation are 
partitioned spatially rather than temporally. Therefore, the throughput of 
an array structure is only limited by the size of the array and the quantity 
of independent data. 

In chapter 4 we ex amine two array machines in detail. In the remain­
der of this chapter we discuss some basic principles of array architectures, 
analyse their performance, and briefly review the historical development of 
a number of important array machines. 

2.1 Design Issues 

Empirical evidence suggests there are two basic ways in which an array 
of functional units (of whatever type) can be composed to form an array 
structure. These are known as lockstep arrays and cyclic arrays, and are 
illustrated in figure 2.1. The lockstep array comprises a number of array 
elements, each with an output register which is strobed by a common dock. 
Each element in the array requires a new set of input operands every dock 
period and produces a new result every dock period. To operate success­
fully, the computation in each element must be independent of all other 
elements, and all computations should take roughly the same amount of 
time. In a cydic array the input operands are accepted in sequence and get 
farmed-out to the array elements on a first-come-first-served basis. Hence, 
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Common Clock Staggered Clocks 

+ ... i 

f(x,) 

Lock Step Array Cyclic Array 

Figure 2.1 Loekstep and eyclie array organisations 

if the latency of the array unit is t" and there are n of them in the array, 
the peak evaluation rate is nlt I per second. Again, all computations must 
be independent, although they need not take the same amount of time. 
Interleaved memories, especially in vector machines, are often organised as 
cyclic arrays of memory modules. 

Applying the concept of array-parallelism to processor design involves 
effort in three major areas. First of all the processing elements of the array 
must be replicated, secondly the memory must be partitioned in order that 
the aggregate processing and memory bandwidths are well-matched, and 
thirdly these components must be connected so that they form an integrated 
computing structure. 

2.1.1 Array processor organisation 

The classical structure of an SIMD-array architecture is conceptually sim­
ple, and is illustrated in figure 2.2. In such architectures a program consists 
of a mixture of scalar and array instructions. The scalar instructions are 
sent to the scalar processor and the array instructions are broadeast to all 
array elements in parallel. Array elements are incapable of operating au­
tonomously, and must be driven by the control unit. 

There are two important control mechanisms: a loeal eontrol mechanism 
by which array elements use local state information to determine whether 
they should execute a broadcast instruction or ignore it, and a global control 



www.manaraa.com

Array-processor Architecture 9 

Broadcast Instructions 

• 0 

I I I 
, I I ,/ 
"- - - - - - - - - ..,- - - - _.- - - - - - - - -- ---

Global State 

Figure tU! Classical SIMD-array architecture 

mechanism by which the control unit extracts global information from the 
array elements to determine the outcome of a conditional control transfer 
within the user's program. Global information can be extra.cted in one of 
two ways. Either the control unit reads state information from one, or 80 

group, of array elements, or it senses a boolean controlline representing the 
logical OR (or possibly the logical AND) of a particular local state variable 
from every array element. 

The three major components of an array structure are the array units, 
the memory they access, and the connections between the two. One can 
identify two ways in which these components can be organised. Figure 2.3 
shows the basic structure of an array processor in which memory is shared 
between the array elements and figure 2.4 illustrates the basic structure of 
an array processor in which all memory is distributed amongst the array 
elements. 

If 8011 memory is shared then the switch network connecting the array 
units to the memory must be capable of sustaining a high rate of data trans­
fer, since e1Jery instruction will require massive movement of data between 
these two components. Alternatively, if the memory is distributed then the 
majority of operands will hopefully reside within the local memory of each 
processing element (where processing element = arithmetic unit + memory 
module), and 80 much lower performance from the switch network can be 
tolerated. The design of the switch network is of central importance, and 
this topic is covered in chapter 3. 
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PC 

Array Control Unit 

Program 
Memory 

Figure e.9 Array processor with global shared memory 

PC 

Array Control Unit 

Interconnection 
Network 

Program 
Memory 

Figure e.,/ Array processor with distributed local memory 
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These two styles of array processor architecture are typified by the highly 
influential machine, which had a fuHy distributed memory, and the ill-fated 
Burroughs Scientific Processor (BSP), which had a shared memory. 

2.1.2 ILLIAC IV - a distributed-memory machine 

The ILLIAC IV system was the first real attempt to contruct a large-scale 
parallel machine, and in its time it was the most powerful computing ma­
chine in the world. It was designed and constructed by academics and 
scientists from the University of lllinois and the Burroughs Corporation. A 
significant amount of software, including sophisticated compilers, was de­
veloped for ILLIAC IV, and many researchers were able to develop parallel 
application software. 

ILLIAC IV grew from aseries of ILLIAC machines. The work on ILLIAC . 
IV began in the 1960's, and the machine became operation al in 1972. The 
original aim was to produce a 1 GFLOP machine using an SIMD array 
architecture comprising 256 processors partitioned into four quadrants, each 
controlled by an independent control unit. Unfortunately, as is often the 
case with such ambitious projects, escalating costs and unforeseen engi­
neering problems resulted in just a single quadrant being built. The clock 
speed of the machine was intended to be 25 MHz but this too had to be 
reduced to 10 MHz, due partly to signal transmission delays resulting from 
the machine's large physical dimensions. 

The processors in each quadrant were connected in the topology shown 
in figure 2.5. Although this looks superficially rather like a square-grid of 
connections it is in fact known as achordal ring (see page 31), due to the 
shifted wrap-around of the boundary connections. Each inter-processor link 
consisted of a bi-directional 64-bit wide channel. 

The control unit of ILLIAC IV, was responsible for performing scalar 
operations and issuing SIMD instructions to an array of 64 processing 
elements. These elements executed instructions in lockstep, although each 
processing element had the ability to execute instructions conditionaHy us­
ing local condition variables. This mechanism whereby processing elements 
selectively 'sit out' instructions makes the machine particularly flexible, and 
is a feature that has been included in a11 subsequent SIMD machines. It 
can even be seen in some vector machines in the form of control vectors (see 
volume I, section 9.2.5). Instructions for both the scalar section and the 
ILLIAC IV array were stored in the 2048 X 64-bit local memories associ­
ated with each processing element. These memories were constructed using 
thin-film storage devices and had access and cycle times of 120 and 240ns 
respectively. The control unit (CU) interface to these memories was a fur­
ther example of array parallelism in operation; the data pathway between 
the CU and the memories was 512 bits wide permitting the CU to access 
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••• 

• • • 

Figure e.5 ILLIAC IV processor interconnection topology 

one 64-bit word from each memory module in one row of processing elem­
ents concurrently (and at a common address), thus achieving an effective 
peak memory bandwidth of 1 word every 30 ns. 

Although the actual performance of ILLIAC IV on real applications was 
only 2 to 4 times that of a CDC 7600, the machine is of significant historical 
value since it is arguably the origin of aH subsequent parallel machines. 
Details of the architecture and of ILLIAC IV are given in Barnes et al. 
[BBK*68], and an account of the development of the machine is presented 
by Falk [Fal76]. 

2.1.3 BSP - a shared-memory machine 

The Burroughs Scientific Processor (BSP) was effectively a successor to 
the ILLIAC IV machine, but with an architecture modified to reflect the 
fact that the BSP was intended to be a commercial product. It had fewer 
processing units than ILLIAC IV, just sixteen in the pre-production version, 
and most importantly these sixteen processors aU enjoyed equal access to a 
common logical address space which was divided into a number of physically 
separate memory modules. The basic structure of the BSP is illustrated in 
figure 2.6. Each processing element was nothing more than an arithmetic 
unit with input and output registers, and these units were homogeneous 
and non-pipelined. 

The BSP was a 48-bit machine, and each arithmetic unit (AU) per-
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Figure H.6 BSP array unit architecture 

13 

Array 
Control 

Unit 

Broadcast 
Instructions 

formed floating-point addition and multiplication in two 160 ns clock peri­
ods. The four units which constitute the array (the AUs, memories, result 
routing switch, and operand routing switch) formed a five-stage macro­
pipeline, and by careful scheduling of micro-instructions the CU was able 
to overlap instructions in order to maximise the utilisation of the macro­
pipeline. The BSP operated by partitioning multi-dimensional array oper­
ations between the AUs on an element-by-element basis. The CU received 
instructions from the scalar processor and decomposed them into micro­
operations which were then scheduled using 'templates'. These were effec­
tively pre-computed assignments of the five stages in the circular macro­
pipeline to the micro-cycles within each instruction. 

A typical sequence of micro-operations required to process each group 
of sixteen operands would be 

1. read operands from memory 
2. route operands to AUs 
3. perform arithmetic operations 
4. route results to their memory modules 
5. write results to memory 
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The BSP provides equal access to all memory modules, from all arith­
metic units, and as such is able to hide the array-like features of the machine 
from software. In practice the programming of the BSP, and the types of 
language structures most suitable for the form of parallelism it embodies, are 
reminiscent of vector processors. This is in fact true of all array processors 
with globally accessible operands, since parallel array units can be organised 
as simple cydic arrays, and cydic array structures have the same perfor­
mance characteristics as pipeline structures. The BSP manages to achieve 
a high performance connection between an array of arithmetic units and 
an array of shared memory modules by a rather novel address interleaving 
mechanism, and this is worth considering in a little more detail. 

In the BSP the unit of parallelism is the vector, and elements of these 
vectors are accessed at index locations which can vary by a fixed increment. 
This increment may be any integer value, and this allows rows, columns and 
diagonals of multi-dimensional arrays which are mapped on to a BSP vector 
to be extracted by the CU with ease. For example, a two-dimensional array 
X may be defined in Pascal notation as 

X : array [l .. column_length, 1 .. row_length] of real; 

and in the BSP this would be laid out in memory in a column-wise man­
ner. Therefore, to extract a column requires an inter-element stride equal 
to 1, and to extract a row requires a stride equal to column_length. Arbi­
trary diagonals can be extracted by using a stride equal to column_length 
+ 1 or column_length - 1. High performance processing of these arrays is 
achieved by extracting sixteen elemental operand sets and presenting them 
to the sixteen arithmetic units in parallel, and naturally maximum through­
put of the array can only occur if all elements are located in different mem­
ory modules. The interleaving scheme in the BSP therefore incorporates 17 
memory modules, the lowest prime number greater than 16. For memory 
address a, the module number m containing that address is hence given by 

m =1 a 117 
and the offset within module m is given by i 

. l a J 1= -
17 

This means that if we pick 16 values for a, separated by a constant value 
d, each will yield a different value for i provided d is not a multiple of 17. 
'{'his results in a high probability of conflict-free access to many common 
array structures. 

The movement of operands between memory modules and arithmetic 
modules was performed by two routing switches, one for input and one for 
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output operands. Each routing switch comprised a fuH 16 x 17 cross-bar 
switch, moving data in units of 48 bits, plus error control bits. These 
switches had a maximum throughput of 16 words every 160nS, or 100 
Mwords per second. The memory modules had a cyde time of 160nS, and 
most arithmetic functions required two dock cydes. This gave the BSP a 
peak operating speed of 50 MFLOPS. 

Only a single pre-production version of the BSP was ever producedj by 
the time it had completed its development phase it had been superseded by 
the CRAY-1, and in 1979 Burroughs suspended the BSP project. One of 
the primary reasons for the demise of the BSP was arguably the decision 
to go for a slow dock speed and non-pipelined logic in the arithmetic units. 
This resulted in a lower peak performance than would otherwise have been 
possible from the ALUs, but made tractable the problem of connecting a 
smaIl but significant numbers of ALUs to a physically common memory. The 
designers of the BSP believed that the ease with which its peak performance 
could be approached would counteract the slow dock speed argument, and 
as Austin observed [Aus79] 

"Simply put, the dock frequency does not indicate how fast 
a machine runs, just how often it stops !" 

If the arithmetic units of the BSP had been pipelined internally the whole 
machine would have had a structure similar to a multiple-pipe vector ma­
chine, such as the CYBER 205 (see volume I, chapter 9) or the NEC SX 
Series machines [WKI86]. 

Despite the curtailment of its commercial career the BSP is often cited as 
an example of a global-memory array processor, and exceHent accounts of its 
detailed architecture and engineering can be found in Kuck & Stokes [KS82] 
and Hockney & Jesshope [HJ81, pages 198-211]. The cost of providing fuH 
access to all memory modules in a shared-memory SIMD architecture has 
meant that to date no large-scale commercial systems have used this form 
of architecture. 

2.2 Performance issues 

To analyse the operational performance of processor arrays, on real prob­
lems, we need to model such systems at two levels, the instruction level and 
the program level. At the level of individual array instructions the mapping 
of application paraIlelism to the available hardware parallelism determines 
the net processing rate for the duration of a single operation, and this can 
be modelled fairly straightforwardly. At the level of a complete program 
the mix of highly parallel array instructions and sequential host-processor 
instructions determines the effective speedup bounds, and these depend 
ultimately on the structure of the application being processed. 
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Let us consider the evaluation of a single array instruction on a two­
dimensional array of single-bit processing elements. Firstly, let us assume 
that the instruction in question defines a word-Iength operation over an 
N X M array of w-bit words. Secondly, let us also assume that the array 
processor consists of a grid of x X y bit-serial processing elements, each with 
a clock frequency of 4> cycles per second. For example, in the ICL DAP 
(described in section 4.1), x = y = 64 and 4> = 5 X 106• 

Certain array processors1 are capable of operating in one of two modes; 
bit-parallel (word-serial), and bit-serial (word-parallel). In bit-serial mode 
all word-Iength operations, for example 32-bit fixed-point addition, are im­
plemented as loops of single-bit operations with each processing element 
operating on a unique pair of operands. In bit-parallel mode w single-bit 
processing elements operate in concert (rather like a w-bit ALU) to pro­
duce a w-bit result. In the best case xy/w word operations can take place 
concurrently. The organisation of bit-parallel and bit-serial operations is 
explained in more detail in section 4.1.3. 

Hence, NM is the degree of parallelism within an array operation, xy 

is the degree of hardware parallelism when operating in a bit-serial fash­
ion, and (assuming w = y) x is the degree of hardware parallelism when 
operating in bit-parallel mode. 

To gauge the performance of a single array operation one must look at 
how an N X M problem can be folded onto an x X y array of processing 
elements. Without any sophisticated re-positioning of data values, the array 
utilisation in bit-serial mode, Eb., is simply given by 

NM 

Eb• = Xyr~lr~l (2.2) 

The throughput in bit-serial mode depends on the chosen word length, and 
so to model the throughput we must include the number of clock periods 
required to complete a single-bit operation, ß, and the number of single-bit 
operations required per word operation, a. In practice a will be a function 
of w. This gives an equation for throughput, WbB' of 

4>NM 
(2.3) 

If we now ex amine how the same N x M problem can be folded on to an array 
of N rows of processing elements operating in a bit-parallel configuration 
we find that the array utilisation, Ebp , is now given by 

NM 
E bp = r 1 x NM 

z 

(2.4) 

IBoth the ICL DAP and the TMC Connection Machine are capable of operating in 
these two modes. 
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Figure 2.7 Raw performance curves for an SIMD-array processor 

Here we get somewhat similar performance, but we are now folding in only 
one dimension. The throughput of the array, in this mode of operation, is 
now dependent upon Pi the time to perform a single word operation using 
ripple-carry addition. For example, when the DAP (see section 4.1.5) is 
performing 32-bit integer arithmetic, and assuming 4 bit-positions of carry­
propagate per dock period, we can expect a value of P in the range 8-10 
dock periods. This pro duces a bit-parallel arithmetic throughput of Wbp. 

(2.5) 

To present a dearer picture of the performance of array processors, the 
equations for Wbß and Wbp vs. N (with M = N) are plotted in figure 2.7, 
for values of x = y = 64, a = 44 (32-bit integer addition), ß = 2.5, p = 10, 
and t/> = 107 . It can be seen than for small values of N and M processing 
in bit-parallel mode gives greatest throughput, but for value of N and M 
greater than about 25 bit-serial mode is fastest. 
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These raw throughput equations are useful for characterising the ma­
chine architecture, and for permitting simple comparisons to be made against 
the raw performance of vector machines such as the CRAY-l and the CY­
BER 205 (see volume I, chapters 7 and 9 respectively). However, these 
figures do not tell us how fast a particular algorithm will execute on an 
array processor, and this is the only sensible metric with which we can 
compare architectures of such widely differing structure. 

Chapter 10 in volume I discussed some realistic performance models for 
vector machines incorporating the notions of vectorisation level, average 
vector length and scalar:vector performance ratios. The concept of a two­
state machine was explained, and this applies equally weIl to an SIMD-array 
processor, although some of the equations are a slightly different. 

Let us consider an array processor which supports a mixture of array 
instructions and scalar instructions. Furthermore, let the ratio of issued 
scalar instructions to issued array instructions be r, and let the average 
time to execute a single scalar instruction be S dock periods. We assume 
that array instructions operate on a matrix of N X M word values, as in the 
previous analyses, and that the processing mode is bit-serial word-parallel. 
Although other modes are possible, limiting the present discussion to that 
most commonly used simplifies matters greatly. 

The space-time diagram of figure 2.8 illustrates the machine activity 
during a mix of r scalar instructions and one array instruction. Expressing 
the efficiency of the machine, on a mix of scalar and array instructions, is 
now a relatively trivial task. 

ffi . active space-time 
e clency = . 

total space-tlme 
rS+Oi.ßNM 

(2.6) 

Upper and lower bounds on efficiency 

The efficiency of an SIMD system depends on two factors: the amount of 
scalar processing, and the effect of folding the processing of a data structure 
of arbitrary size onto an array of fixed dimensions. 

From equation 2.6 we can see that in the limit, as the proportion of 
scalar operations increases (that is, as r -+ 00), the efficiency is defined by 

I· ffi . 1 1m e clency = -
r-+oo xy 

This is a rather weak lower bound on efficiency since only very inappropri­
ate applications will have values of r which are large in comparison with 
Oi.ßNM/S. 
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Figure 2.8 Space-time diagram Jor an SIMD-array processor 

Conversely, as the proportion of sealar operations falls towards zero, the 
effideney beeomes 

li ffi . NM 
. m e eleney = r 1 r 1 r-+O zy!i. M 

Z \I 

whieh is equivalent to equation 2.2. Therefore, we ean eonsider the folding 
problem in isolation by assuming that r = O. 

Let us eonsider the best and worst ease values for effieieney when the 
size of the data strueture being proeessed is greater than the size of the 
physieal array in both dimensions. The best ease eonditions for the folding 
problem oeeur when N = k1z and M = k2 y, where k1 and k2 are both 
integer constants. Under these eireumstances the effideney is unity. The 
worst ease eonditions, assuming N ~ z and M ~ y, oeeur when N = z + 1 
and M = y + 1. Then the effideney is given by 

. (z+I)(y+l) 
efficlency = -'--"';"'~-~ 

4 

This is always greater than 1/4, and henee the lower bound on effieieney 
when folding oeeurs eannot be less than 25%. 
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Figure 2.9 Curves showing the relationship between computational effi­
ciency, speedup and parallelism, in array processors 

2.2.1 Scalability 

One way of assessing the seal ability of an architecture is to examine the 
performance of the system on a problem of constant complexity (fixed N and 
M) whilst varying the degree of hardware parallelism, x and y in the case 
of a two-dimensional array processor. Using the above models, it is possible 
to plot curves to show the relationship between computational efficiency, 
speedup and parallelism. Figure 2.9 illustrates these relationships, and it 
can be seen that as the size of the array increases the performance also 
increases, as one might reasonably expect, but that the effidency falls away 
quite markedly. This is due to the end-effects becoming more noticeable 
as x -+ N and y -+ M. It can be seen that speedup increases as a step 
function, as x and y increase. This continues until x = N (and y = M), 
at which point all application parallelism is exploited optimally. Processor 
arrays larger than this do not exhibit any further speedup, and naturally 
their efficiency tends to an asymptotic value of zero. 
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One further point to note about the scalability of SIMD architectures 
is the problem of global synchronisation. If one assurnes that all processing 
elements operate in lockstep, then the dock period of the array cannot be 
less than the time to propagate a broadcast instruction from the control unit 
to an arbitrary processing element. In a large array the propagation time 
of dock and control signals through fan-out logic will become noticeable. 
The fan-out delay will naturally grow logarithmically with the number of 
processing elements, but the transmission of signals takes O(n1/ 3 ) time, for 
an n-processor system. Proof of this is left as an exercise for the reader. 

2.3 Summary 

The evolution of array processors can be traced as far back as 1958, when 
Unger published a paper entitled "A Computer Oriented Towards Spatial 
Problems" [Ung58], from which the first array processor SOLOMON was 
developed [SBM62,GM63]. The SOLOMON design consisted of a two­
dimensional array of 32 x 32 processing elements (PEs), each of which 
had 128 32-bit words of store and a bit-serial arithmetic unit. All PEs 
acted in unison, under the control of a single stream of broadcast in­
structions. The SOLOMON design had a major effect on the subsequent 
thinking of computer architects, and led to the development of several im­
portant high-performance architectures including the ILLIAC IV machine 
[BBK*68,FaI76], the Burroughs Scientific Processor [KS82], the Burroughs 
PEPE machine [CGH*72,VC78], the Goodyear Aerospace Massively Par­
allel Processor [Bat80], the Goodyear Aerospace STARAN [Bat74,Bat76] 
and [Bat77], and the ICL Distributed Array Processor (DAP) [Red73]. The 
advances in VLSI technology which led to the microprocessor revolution 
also had an impact on the design of SIMD array processors. The reduction 
in mimimum feature size, and the availability of high-density gate-arrays 
and full-custom VLSI as a means of realising a particular implementation 
contributed towards the construction of the Connection Machine [HiI85] by 
Thinking Machines Corporation in 1985. In chapter 4.1 we use the ICL 
DAP and the TMC Connection Machine as examples of practical array 
architectures and describe their operation in some detail. 
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3 Interconnection N etworks 

The first half of this book is concerned essentially with the ways in which 
massive data parallelism can be processed by large numbers of processing 
elements, acting in concert, und er the control of a single sequence of com­
mon instructions. As outlined in chapter 2, these processing elements may 
either share a common memory or be provided with their own private me m­
ories. This leads to the two general array architectures shown in figure 2.3 
and figure 2.4. In both cases an interconnection structure is required, either 
to provide all processors with equal access to a number of parallel memory 
modules, or to provide a data communication mechanism between process­
ing elements. The second half of this book is concerned with parallelism of a 
different form; where large numbers of processors cooperate asynchronously 
on different parts of the same task, either through shared access to the data 
structures which define the problem or through a distribution of the prob­
lem coupled with the occasional exchange of messages between processors. 
Again, in both of these cases some form of interconnection structure is re­
quired; either to provide concurrent access to a shared memory structure, 
or to provide a message-routing facility. 

The throughput of the interconnection structure, whether for use in 
SIMD array processors or in an MIMD system, should match the combined 
bandwidth of the processing elements, and must therefore be capable of sup­
porting a large number of parallel connections. This chapter considers the 
design of such parallel interconnection structures, and most of the material 
is relevant to both the major forms of architecture discussed in subsequent 
chapters. 

Conceptually, the simplest way to provide a fuH connectivity between 
m source units and n destination units is with a cross-bar switch, as shown 
in figure 3.7. The cross-bar switch is capable of realising any one-to-one, or 
one-to-many, set of connections. However, the hardware cost is proportional 
to m.n, and as m is normally similar in magnitude to n this equates to 
approximately n 2. This makes such interconnection structures impractical 
for highly parallel systems, where n and mare typically in the range 28 to 
216 . Designers must forgo the luxury of full connectivity, and accept more 
restricted, or slower, communication structures. 

In an SIMD system the movement of data through the interconnec­
tion structure takes place under explicit program contro!. Therefore, data­
movement instructions must define source-to-destination mappings, known 

22 
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as routing functions, from which network control signals can be generated. 
If the source-to-destination mapping defines a unique destination address 
for every possible source address, then the routing function is apermutation 
on the source address, and can be defined mathematically. This useful prop­
erty of interconnection networks is explained in more detail in section 3.2. 

3.1 Characteristics of interconnection structures 

The design-space of interconnection structures can, according to Feng 
[Fen81], be represented as the Cartesian product of four primary design 
features: operating mode, control strategy, switching method and topology. 

The operating mode of an interconnection structure refers to whether 
the transfer of data takes pi ace synchronously or asynchronously. The op­
erating mode of an SIMD interconnection structure is usually synchronous, 
since all processing elements will typically perform data-movement oper­
ations simultaneously. The operating mode of interconnection structures 
for multiprocessor systems is normally asynchronous, since the initiation of 
data movement is controlled by independent instructions in each processor. 

Interconnection structures consist of active switching nodes connected 
by passive links. They can be represented as graph structures in which the 
active switching nodes form the ver ti ces and the links between them form 
the edges. In order to implement specific routing functions a set of control 
signals must be generated for every active component. These control sig­
nals could be generated by a single control unit, using information about 
all the connections requiredj this is known as centralised control. Alterna­
tively, the control signals may be generated locally, using only information 
about the input-output mappings required of a single switching node or a 
group of switching nodes; this is known as distributed control. Interconnec­
tion structures for SIMD systems normally use centralised control, whereas 
multiprocessor interconnection structures normally incorporate distributed 
control. 

The switching method relates to the physical extent and duration of the 
switch settings for a particular routing function. There are two switching 
methods in common usage: circuit switching and packet switching. A third 
method which incorporates elements of packet and circuit switching, known 
as hybrid switching, has been suggested by Siegel and McMillan [SMB1]. 
Circuit switching is normally used, in conjunction with a centralised control 
structure, for SIMD systems or bulk data transmissions. It has a relatively 
low control overhead, and requires relatively simple switching nodes. Packet 
switching is most commonly used in multiprocessor and other MIMD sys­
tems, or where short bursts of data transmission are required. The packets 
are normally self-routing, requiring complex switching nodes; often under 
distributed control. Routing conflicts are possible when self-routing packets 
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are used, and this in turn requires a conflict resolution strategy. Examples 
of conflict resolution strategies are given in section 4.2.3 which describes 
an adaptive approach to conflict resolution for a large SIMD array proces­
sor, and in chapter 7 which describes several strategies used in a variety of 
shared-memory multiprocessor systems. 

3.2 Network routing functions 

A large number of network structures have evolved during the last few 
decades, with the early research in this area being conducted by telephone 
companies [Ben65,Wak68] that needed ever larger and more efficient cir­
cuit switching exchanges. More recently the application of interconnection 
networks to parallel computers has been investigated [MGN79,Fen81,Sie79] 
and [Law75]. 

The requirements of parallel computing structures are somewhat differ­
ent from those of a telephone system. In a telephone network requests for 
the connection of a circuit-switched link between an originator and a respon­
dent may occur at any time. The primary aim is to maximise the number 
of concurrent circuits. In a parallel architecture a network is required to 
support either processor-to-memory connections or processor-to-processor 
communication links. It is instructive to visualise an interconnection net­
work in a parallel computer simply as a 'black box', with a number of input 
ports and a number of output ports, which performs a specified routing 
function to connect inputs to outputs. 

In SIMD systems, where a single instruction operates on a multiplicity 
of data, the routing function may be completely defined within each data­
movement instruction. Consequently all input-output connections will be 
distinct. Much of the remainder of this chapter discusses interconnection 
networks which fall into this category. In MIMD systems, where each con­
nection is defined by individual processors operating independently, no as­
sumptions can be made about the input-output connections requested by 
each processor. For example, two processors may both request data from 
the same shared memory bank simultaneously, resulting in network requests 
with distinct input ports but the same output port. Although this prob­
lem is not found exclusively in MIMD systems (for an example of routing 
conflicts in SIMD systems see section 4.2), most of the research into solving 
this problem had been on MIMD systems. 

An idealised interconnection structure takes a set of labelled input ports 
and sets up a number of connections them to a similar set of output ports, 
as shown in figure 3.1. In order to simplify this discussion of interconnection 
networks it is assumed that the number of input and output ports in the 
network are equal. Hence if we define A to be an ordered set of N port 
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A = {O, 1,2, ... , N - 1} 

25 

A routing function f is is a function from port labels to port labels, thus 

f:A-A 

If f is an injection on A, then it can often be represented as a sequence 
of simple permutations of the labels in A. For example, if A represented 
a labelIed deck of playing cards then a possible permutation to perform 
would be a perfect shufHe, and in fact this is a very useful permutation for 
interconnection networks. 

Perfect-shufHe permutations 

A perfect-shufHe permutation of port labels can be used to map from a set, 
of sour ce labels S to a set of destination labels D. The ordered set of input 
labels is divided into two subsets of equal size which are then interleaved. 
This can be represented by the bipartite graph of figure 3.2, from which 
it can be observed that this permutation can be produced by a simple 
manipulation of the binary representation of the source label. If we express 
a port label as an ordered set of binary digits, x, such that 

x = {an, an-I, ... ,a2, all = an.2n- 1 + an_I.2n- 2 + ... + al 

then it is a relatively simple matter to define formally the perfect-shufHe 
permutation. Observing the source and destination port labels for N = 4, 

S {{O,O}, {O,l}, {l,O}, {l,l}} 
D = {{O,O}, {I,O}, {O, I}, {I, I}} 
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Source Address Destination Address 
000 .000 

g~~§!g~~ 
011 011 
100 100 
101 101 
110 110 
111 .. 111 

Figure 9.2 The shuiJle permutation for N = 8 

it ean be seen that a perfeet-shufHe permutation consists of a simple eireular 
rotation of the port label bits one plaee to the left. Thus, we define the 
perfeet shufHe permutation u(x) to be, 

It is also possible to rotate just apart of the binary representation of x, 
and this gives rise to the super-shufHe and sub-shufHe permutations. The 
kth super-shufHe, denoted u k , involves a rotation of the most signifieant k 
bits in x, thus 

The kth sub-shufHe, Uk, involves a rotation of the least signifieant k bits in 
x, thus 

The main reason why the perfeet shufHe alone is not suffieient to implement 
a fuH intereonneetion strueture ean be seen by observing figure 3.3, whieh 
depiets the perfeet shufHe permutation in terms of aH possible inter-nodal 
links. When the perfeet shufHe permutation is repeatedly applied to x, 
effeetively reeirculating data through the network several times, we notiee 
a number of uneonneeted groups of network ports. This is a eonsequenee 
of the number of 1 's and O's in the binary representation of x remaining 
unaffeeted by the perfeet-shufHe permutation. 

The exchange permutation 

Another useful permutation is the exchange permutation, fä(X), and this is 
defined as 
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Figure 9.9 A recirculating shuiJle network 

Informally, the exchange routing function causes the movement of data to 
occur between pairs of network ports with labels whose binary represen­
tations differ only in the i th bit position. Therefore an eight-port EI per­
mutation yields the connectivity shown in figure 3.4. It may be noticed 

Figure 9.4 Exchange permutations lor N = 8 

that the exchange permutation does alter the number of 1 's and O's in the 
destination label, compared with the source label, and consequently con­
nects the disjoint groups of network ports produced by the perfect-shufRe 
permutation. 

The butterfly permutation 

The butterfly permutation, ß(x), is defined formally as 

Informally, the most and least significant bits in the binary representation of 
the network port label are interchanged, and this is illustrated in figure 3.5 
which shows the bipartite graph for a butterfly permutation. Two vari­
ants of the straightforward butterfly permutation are possible, the kth sub­
butterfly and the kth super-butterfly. The kth sub-butterfly permutation is 
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Source Address Destination Address 
000 .000 

001~001 010 010 
011 011 
100 100 
101 101 
110 110 
111 .111 

Figure 3.5 The butterfly permutation for N = 8 

performed by interchanging bits one and k in the binary representation of 
x, thus 

whereas the kth super-butterfly permutation is performed by interchanging 
bits n and k, thus 

Visualising these permutations, as bipartite graphs, is left as an exercise for 
the reader. 

The shüt permutation 

The shift permutation, a(x), is defined formally as 

a(x) = Ix + llN 

Informally, the destination label is the numerical value of the source label 
plus one, modulo N. When represented aB abipartite graph the shirt per­
mutation looks like figure 3.6. The inverse ofthe shift permutation, a- 1(x), 
is also useful and can be observed by reading the bipartite graph for a(x) 
backwards. Hence 

The shift permutation is an arithmetic permutation, rather than a logical 
permutation, aB the label is permuted by a numerical function as opposed 
to a bit-manipulation function. 

Permutations involving bit-manipulations, if capable of permuting any 
n-bit source label to an n-bit destination label, do so in a maximum of 
n = log2(N) applications of the permutation. However, permutations in­
volving incremental arithmetic functions on labels may require as many 
as N applications of the arithmetic function. As a consequence routing 
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Source Address Destination Address 
o 0 
1 1 
2 ~""-.... 2 
3 3 
4--__ -//-----·~ 4 
5 5 
6 6 
7 7 

Figure 9.6 The shift permutation for N = 7 

functions constructed from shift permutations are not as powerful as those 
constructed from the exchange, shufHe and butterfly permutations unless 
the source and destination labels differ, on average, by less than log2 N. 

The identity permutation 

The identity permutation, I(x), is defined formally as 

I(x) = x 

This permutation simply preserves the ordering of the input and is used to 
define inverse permutations such as C1(x), the inverse exchange permuta­
tion, thus 

or simply 

3.3 Network topology 

Having defined the characteristics of interconnection networks, and pre­
sented some formal routing functions, we now discuss their topology and 
physical implementation. 

An interconnection network can be depicted as a graph in which the 
nodes represent switching elements and arcs represent physicallinks. Such 
a graph is capable of describing the topology, but does not impart a great 
deal of knowledge about the network characteristics. Diagrammatic rep­
resentations of network structures should not therefore be regarded as a 
comprehensive notation for the description of interconnection structures, 
although they are useful for the way in which they provide an immediate 
visual representation of the network topology. 
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In general, the input-output connections provided by a network may 
be either physical or virtual. If the links are dedicated, serving just two 
nodes, then the connections naturally represent a physical realisation of 
the network routing function. For example, the ring-structured topology 
depicted in figure 3.8 is a physical realisation of the shift permutation, 0:( x). 
Here there is a unique arc in the graph for every instance of the routing 
function. This type of network is known as a static network, and it can be 
characterised by the fixed routing between nodes, the dedicated links and 
the passive switching elements. 

If the nodes between links are shared by several input-output connec­
tions, only one of which can be active at a time, then the network topology 
supports virtual connections. The cross-bar switch, shown in figure 3.7, is a 
good example of a network with virtual connections. The cross-bar realises 

-9-= Switch Element 

Input 0 

Input 1 

Input 2 

· (N2 Switch 

· Elements) 

· 
Input N-1 

. . . 
Output 0 Output 1 Output N-1 

Figure 9.7 The cross-bar switch network 

the routing function X, where 

X(a) = b == --, (::Jc : X(c) = b) 

Informally, X maps any a to any b if, and only if, it is not the case that there 
exists another input c which also maps to b. There is no Ion ger a unique 
path through the network for every instance of the routing function, and 
hence there will be occasions when a cannot be routed to b. The routing 
function X is non-deterministic, in other words if a and c both want to map 
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to b the routing function is not rich enough to decide which input maps to c 
and which does not. Nor does the routing function describe what happens 
to an input which cannot be mapped. These network characteristics are 
generally implementation dependent. This type of network is known as 
a dynamic network and can be characterised by the configurable routing 
structure, the shared links and the active switching elements. 

3.3.1 Statie networks 

In a static network the connectivity between nodes is defined by the presence 
of physicallinks, and this makes the choice of network topology heavily de­
pendent on the expected pattern of communication. The topology of static 
networks can be eharacterised very simply in terms of geometrie dimen­
sionality. Thus, we can define zero, one, two, three and even n dimensional 
networks, some examples of which are shown in figure 3.8. 

Zero, one, two and three dimensional topology 

The zero dimensional network is in fact a single network node, without any 
links to other nodes, and is shown here solely for the sake of completeness. 
It has a null routing function and no communication bandwidth. Increasing 
the dimensionality to 1 produces a chain of nodes; effectively a bi-directional 
pipeline. Linking the ends of the pipeline produces a simple two-dimensional 
ring topology. In a ring structure the throughput, the average path length 
between any two nodes, and the cost, are all proportional to N. 

The topological 'dual' of the ring is the star network, and this has sim­
ilar performance characteristics to a shared bus structure. The number of 
parallel connections is 1, the maximum distance between no des is 1 and the 
cost is proportional to N. 

Tree-structured networks have some useful properties, especially when 
the problems being solved can be decomposed into hierarchies of activity. 
The most important property is that the distance between any two nodes 
is always less than 

The rectangular mesh network is another two-dimensional network, and 
is particularly suited to applications with highly localised inter-processor 
communications. It can be thought of as 2(n + m) inter-linked ring net­
works (where N = nm), and can therefore be expressed in terms of shift 
permutations. The number of possible data movement operations that can 
take place in parallel is proportional to N; however, the maximum distance 
between any two nodes is W. 

If a network topology cannot be depicted without ares crossing, then 
it is of three or more dimensions. Examples of three-dimensional static 
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O-dimensional 

o (Single Processing Element) 

1-dimensional 

~(Chain) 

2-dimensional 

3-dimensional 

(Tree) 

(Completely 
Connected) 

-{)---c:>---c>- (Rectangular Mesh) 

Figure 9.8 Typieal statie networks 

(3-Cube) 

network topologies are the eh ordal ring, the eompletely eonneeted network 
and the 9-eube. 

Variations on the chordal ring can be devised that are equivalent to 
square mesh networks with shifted wrap-around at the boundaries. This 
can be verified by a simple pencil and paper exercise, and in fact formed the 
basis for the ILLIAC IV interconnection network [BBK*68]. Such partially­
connected chordal rings have a maximum distance between any tWQ nodes 
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of VN - 1. 
The 3-cube consists of eight nodes connected in a three-dimensional cube 

structure, and is actually a particular instance of a more general network 
topology known as the binary k-cube [Pea77]. 

The binary k-cube 

A binary k-cube, often referred to simply as a 'hypercube', connects N = 2k 

network nodes in the form of a cube constructed in k-dimensional space. 
The corners of this cube represent the nodes, and the edges represent the 
inter-nodal connections. More formally, if the nodes are numbered from 
o to 2k - 1, no des whose binary numbering differs in exactly one position 
have connections between them. Figure 3.9 shows how binary k-cubes are 
constructed far k in the range 0 to 4. 

o 10 K=O 

K=1 K=2 

K=3 

K=4 

Figure 9.9 Constructing binary k-cubes 

The binary k-cube therefore has k routing functions, Ci {O ::; i ::; k-1}, 
one routing within each dimension, defined thus 

Informally, for each dimension either an exchange permutation (Ei) or an 
identity permutation (I) is applied to x in order to establish a route from any 
sour ce to any destination node. A route from any source to any destination 
label can be found by starting at the source node and then comparing each 
bit in the source and destination labels in turn. If the bits are the same, 
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then the identity permutation is applied to the source label and the route 
is not extended. If the bits are different, then the exchange permutation is 
applied to the source label, and the route extends along the link connecting 
the current node to a new node with a label equal to Ei (current label). 
Such a route is illustrated in figure 3.10. It is also apparent that since 
the maximum number of bits required to identify n processors uniquely is 
k = f}og2 n 1 the path length between an arbitrary pair of nodes is at most 
k. 
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S= {001 J 

D= (100J 

Figure 9.10 Routing in a binary k-cube network 

It is immediately apparent that the binary k-cube has a very rich inter­
connection structure, with a total of k2k - 1 bidirectional connections, and 
k communication links per node. One possible problem, which could limit 
the number of nodes in an k-cube network, is the number of communica­
tion links required per node, and hence the physical complexity of the whole 
network. In fact, it is the length of the interconnecting wires which poses 
the most serious problem for networks with large values of k. This can be 
shown by examining the rate of growth of the volume of the network. 

The rate of growth of the inter-nodal distances in a binary k-cube de­
pends on the length of one side of the machine. Since most machines are 
constructed physically in three-dimensional space, one side of a machine 
must have length which is 8(N1/ 3). Consequently, the time delay associ­
ated with the transmission of messages across the most significant dimension 
of the network will also be equal to 8(Nl/3). If the system is synchronous 
then the clock speed of the machine must decrease in proportion to this in­
creasing delay; alternatively, if each processor runs at 0(1) instructions per 
second then the interval between each communication event must increase in 
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InputOÜ J3- 0"",,, 

Input1~ &- Output1 

InputN-1~ ~ OutputN-1 

Figure 9.11 Single-stage dynamic network 

proportion to the increased transmission delay. The net effect of increasing 
wire length is that the communication bandwidth per node decreases as the 
system becomes larger. This is essentially a problem of physical scalability, 
and is discussed with reference to multiprocessor systems in section 6.2.2. 

The Cosmic Cube [Sei85] and Mosaic [Sei83] experiments carried out by 
Seitz at Caltech are typical of the kinds of architecture that can be con­
structed using binary k-cube topology, the commercial derivative of which 
is outlined in section 8.3. 

3.3.2 Dynamic networks 

A serious disadvantage of static networks is their lack of flexibility, and 
hence the need to provide physical links to match an apriori notion of the 
required pattern of communication. Dynamic network topologies normally 
support arbitrary communication patterns, and are therefore designed on 
the basis of their comparative throughput, cost and switching methodology 
rather than their physical structure. 

Dynamic networks can be divided into two classes: single-stage and 
multi-stage. A single-stage dynamic network, depicted in figure 3.11, con­
sists of a number of input demultiplexers (ID) and a number of output 
multiplexers (OM) connected according to a fixed permutation. A desired 
set of paths through the network is established by applying suitable control 
signals to the ID and OM switches. Under certain circumstances it may not 
be possible to establish a path to the desired destination in a single pass 
through the network, and the data being transmitted will be sent through 
the network two or more times. Such a network is known as a recirculating 
network. 
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The number of recirculations required to implement a particular rout­
ing depends upon the the connectivity of the network, and this leads to a 
trade-off between connectivity (cost) and routing time (l/bandwidth). At 
the extremes of this trade-off are the cross-bar switch, the most highly con­
nected and costly single-stage dynamic network, and the shared bus, the 
least connected and cheapest form of single-stage dynamic network. 

3.3.3 Multi-stage networks 

When the required permutation for all input-output connections· can be 
specified formally as a single homogeneous function a static network, such 
as a binary k-cube, can be used. However, when an arbitrary permutation 
of input-output connections is required a more flexible structure is required. 

The Benes network 

As we have seen, the cross-bar switch is capable of connecting fully an 
arbitrary input-output permutation but at an impractically high hardware 
cost. In 1965 Benes devised a method of reducing an N x N cross-bar switch 
to two N/2 x N/2 cross-bar switches and two N-input exchange switches 
[Ben64], as illustrated in figure 3.12. 

Input 0 Output 0 

Input 1 Output 1 

InputN-1 Output N-1 

Figure 9.1E Benes reduction 0/ the cross-bar switch 

The resulting N /2 x N /2 cross-bar switches can be similarly reduced, 
and through this recursive trade-off between complexity and network la­
teney a fuH eonnection network can be produced at a significantly lower 
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cost than a fun cross-bar switch. This network, illustrated in figure 3.13, 
is constructed entirely from 2-input 2-output switch-nodes, arranged as a 
sequence of stages connected by inverse shuffie permutations l . 

Inputs Outputs 

0 0 

2 2 

3 3 

4 4 

5 5 

6 6 

7 7 

Figure 3.13 An 8-way Bene~ network reduced to 2 X 2 cross-bar switches 

The input-output mappings performed by the 2 x 2 switch-nodes may 
be either strict permutations of the inputs, or may include the upper and 
lower broadcast mappings tl;(x) and I;(x), where 

and 

A general 2 x 2 switch-node routing function, E;, can therefore be defined as 
a choice of one of the four switch settings illustrated in figure 3.14, expressed 
formallyas 

Ei ( x) = {Ei I I I tl; I/i }( x ) 

If only strict permutations are allowed, i.e. only Ei(X) and I(x), then a 
single control-bit per switch-node is all that is required to configure the 
network. If upper and lower broadcasts are allowed, then two control-bits 
per switch-node are needed. A Bene~ network using strict permutation 
switches is capable of connecting all N! permutations of N-inputs, and if 
upper and lower broadcasts are supported then all NN well-defined input­
to-output mappings can be connected. The Bene~ network is known as a 
rearrangeable network since the switch settings can always be rearranged to 
accommodate any change of input-to-output mapping. 

1The inverse shuflle, o--l(Z), is simply a. right-circular rotation of the binary repre­
sentation of z as opposed to a. left-circular rotation for the ordinary shuflle permutation 
o-(z). 
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E; ==:B=: 
:[J : 

U; --=EJ=: 
I; :I~I : 

Figure 9.14 Generalised exchange switch mappings 

Shuffle-exchange networks 

In order to provide full connectivity the Bene§ network requires 210g2(N)+1 
stages, each with N /2 switch-nodes. However, it is possible to reduce the 
cost of a multi-stage network still further by using a dass of networks, which 
are not fuH connection networks, known as shuffle-exchange networks. In 
general, shufHe-exchange networ ks consist of a sequence of log 2 (N) exchange 
permutations interspersed with shufHe or butterfly permutations. 

On first inspection the following discussion on shufHe-exchange permuta­
tions may appear to be simply a notational convenience, but it is important 
to understand how a sequence of shufHe and exchange permutations can 
together form a useful network. The key to understanding multi-stage per­
mutation networks is to consider the effect each successive permutation has 
on the label of an object in passage through the network. Assume that S 
is the label of an object entering the network, and D is the label of the 
destination of that object. We associate a temporary label L with the ob­
ject, and this is initially set to S. If we can modify L by a sequence of 
permutations so that it becomes equal to D then the object will arrive at 
its destination. 

Since the E1 permutation provides us with the choice of inverting the 
least significant bit of the input label or leaving it intact, it is possible to 
use the E1 permutation to make the least significant bit in L equal to the 
least significant bit in D. This is the basic step in converting from L to D, 
and the choice of (1 or I permutation determines the switch-node setting in 
the general exchange box of figure 3.14. The next step is to expose the next 
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bit in L to the El permutation, and this is done most simply by shifting L 
by one bit. This is directly equivalent to a perfect-shufHe permutation on 
all labels L in the range 0 to N, as shown for N = 8 in figure 3.2. After 
n = log2 N applications of the shufHe and exchange permutations all bits in 
L will have been changed, and L will be equal to D. As a direct consequence 
of this, the object located at label L will have been routed to the output 
port identified by D, and the network will have performed its function. 

A number of important multi-stage shufHe-exchange networks have been 
devised, and of these the omega, the indirect binary n-cube and the banyan 
networks are discussed briefly. The banyan network of Goke and Lipovski 
[GL73], denoted by the composite routing function Yn , can be defined as a 
sequence of general exchange and butterfly permutations, thus 

In this network there are n = log2 N stages each consisting of N /2 active El 
no des, with successive stages connected by passive ßi permutations. This 
is illustrated in figure 3.15 wh ich depicts a three-stage (8-input, 8-output) 
banyan network. 

Inputs E, E, E, Outputs 

0 0 
1 1 

2 2 
3 3 

4 4 
5 5 

6 6 
7 7 

Figure 9.15 The banyan network 

The n-stage Omega network of Lawrie [Law75], denoted by the com­
posite routing function On, is defined as a sequence of shufHes and general 
exchange permutations, thus 

Lawrie's O-network uses switch-nodes with upper and lower broadcast 
capability, and it is worth noting that all stages in the network are identical. 
However) it can be seen from figure 3.16 that the O-network is incapable of 
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establishing connections from nodes 4 to 4 and 6 to 5 simultaneously. For 
this reason the O-network is a blocking network. In principle all multi-stage 
networks with log N stages are blocking networks, although techniques for 
overcoming blockages vary between implementations. 

Inputs E, E, E, 
Outputs 

0 0 
1 1 

2 2 
3 3 

4 4 
5 5 

6 6 
7 7 

Figure 9.16 The omega network 

The indirect binary n-cube suggested by Pease [Pea77], wh ich we denote 
Rn, can be defined formally as 

Rn = E1ß2EIßS" . ßnEIU;;l 

The indirect binary n-cube, sometimes known simply as the multistage cube, 
is very similar to the O-network although the pairs of connections which it 
is unable to connect are different from those of the O-network. The indirect 
binary n-cube is illustrated in figure 3.17. 

Although the shuffie-exchange dass of networks are blocking networks 
they still have a rich interconnection structure, capable of supporting a large 
number of simultaneous connections, at a relatively low cost. Most high­
performance computers which incorporate a multi-stage network use some 
form of shuffie-exchange switch, for example the Bolt Beranek & Newman 
Butterfly machine described in section 7.4. 

Switch control mechanisms 

A fuH connection network is one which is capable of realising every possible 
set of input-output connections. Blocking networks are not fuH connection 
networks, but networks like the Bene!l and the cross-bar are fuH connection 
networks. One possible problem with these types of network is how one 
generates the control signals for every possible permutation, since the ad­
dition of a new connection to an existing configuration of a Bene!l network 
may require existing connections to be re-routed. 
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Inputs 
E, E, 

Outputs 

0 0 
1 1 

2 2 
3 3 

4 4 
5 5 

6 6 
7 7 

Figure 9.17 The indirect binary n-cube network 

Given an arbitrary mapping and a full connection network, algorithms 
can be defined which analyse the mapping and factor it into a sequence 
of permutations [GS82], yielding as a result the control signals required to 
configure a set of switch-nodes. However, the best known algorithm for 
factoring an arbitrary permutation takes O(log4 N) steps [OT68] compared 
with a total transmission latency through a typical multi-stage network 
of 0 (log N). Such techniques can therefore only be used to pre-analyse 
known network configurations in advance of their application, and this is 
the approach used in the IBM GFll Array Processor [BDW85] which uses 
a modified Bene!! network known as the 'Memphis Switch'. 

The main difficulty with pre-analysis is that each permutation requires 
O(N log N) bits of control information, and the network may be capable of 
configuring as many as N! permutations. Needless to say, such quantities 
of control information could never be stored in full, and only a subset of 
the full set of permutations could be supported. This kind of switching is 
essentially static, and does not solve the problem of simultaneously moving 
large numbers of data items to unpredictable destination addresses. 

The alternative to a centralised control strategy is a distributed control 
strategy in which each item of information is tagged with its destination 
address. Tags provide enough information to enable each switch node to 
compute its local switch setting dynamically, and hence then obviate the 
need to perform any pre-analysis. This introduces the problem of dealing 
with routing conflicts which can occur within a switch node, a topic which 
is discussed in more detail in section 7.4.4. 
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3.4 Sununary 

In this ehapter we have introdueed the theory behind intereonnection net­
works without looking in any detail at how they are implemented in prae­
tice. This is eovered in later seetions whieh diseuss individual maehines 
ineorporating these types of strueture. There are two major eategories of 
intereonneetion strueture: statie and dynamie, and eaeh is appropriate for 
a different class of parallel system. We have seen how permutations are 
important in the design of multi-stage networks, and how they can be com­
posed to create standard multi-stage networks like omega, banyan, and the 
indirect binary n-cube. 

Intereonnection structures are of fundamental importance in highly par­
allel systems. It is easy to replicate processing resourees, and it is easy to 
replicate memory resources. However, to implement a high performance 
arehitecture through a replication of processing and memory resourees an 
effieient method of connecting these components together in parallel is es­
sential. This me ans providing an interconnection structure which supports 
a number of parallel input-output connections, preferably one where the 
number of input and output connections is not constrained by logical, elec­
tricalor physical limitations. 
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In each category of computer architecture, be it parallel or sequential, there 
are often one or two machines which embody a large majority of the princi­
pal techniques for that category of machine. In this text we have chosen to 
use the ICL Distributed A:tray Processor (DAP) rmd the TMC Connection 
Machine as examples of SIMD processor arrays, as they have particular 
significrmce, by virtue of their position in the chronology and taxonomy of 
these types of machine. The DAP, for example, was the first commercial 
exploitation of this style of architecture, a style which crm be traced back 
many years. In particular, the design of the DAP owes much to the pioneer­
ing work carried out on the SOLOMON computer [SBM62], and later on 
the ILLIAC IV computer [BBK*68]. The Connection Machine represents a 
more recent evolutionary step embodying the integration of several process­
ing elements on a single chip, rmd the consequent production of a massively 
parallel system. The target applications, and programming language, of 
the Connection Machine are also adeparture from the conventional view of 
array processors as providers of high performance numerical facilities, rmd 
this is explored in more detail in the following chapter. 

4.1 The ICL DAP 

The DAP enjoyed moderate commercial success and extensive use by the 
scientific research community, particularly in the U.K. The success and 
architectural significrmce of this machine are due to a number of innovative 
features. For example, interactions between the array control unit and the 
two-dimensional array of processing elements crm occur in either of the 
two dimensions. The architecture of the DAP also permits problems larger 
than the physical processor array to be processed without resorting to time­
consuming overlay techniques. 

The low cost of the DAP can be partially attributed to the use of conser­
vative technology, although the method of connecting the DAP to its hast 
processor certainly played an important part as well. The memories of the 
DAP processing elements are configured so that they appear, from the ICL 
2900 host, to be simply an additional memory segment. The host therefore 
has fuH read/write access to the distributed memory within the processor 
array. 

The architecture rmd technology of a machine should never be consid-

43 
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ered in isolation; more often than not technology is a limiting factor for 
the computer architect, effectively dictating what can or cannot be im­
plemented at a reasonable cost. Occasionally, new technology gives rise to 
new architecture, rendering previously unimplementable structures feasible. 
Some of the most successful high-performance machines, particularly those 
designed by Seymour Cray, have been supported by such technology-driven 
advances. The DAP however is different, and is one of the most technology­
independent of all high performance architectures covered in this book. This 
stems from the relatively low dock rate of 5 MHz, and the use of massive 
data-parallelism as a means of achieving high performance in preference to 
using very high speed logic and a pipelined architecture. 

4.1.1 System architecture 

The DAP, and its ICL 2900 host, together form a dual-processor system. 
The interconnections between the host, the array and their peripher als is 
illustrated in figure 4.1. It can be seen that the host has equal access to 

Peripherals 

Figure 4.1 DAP system architecture 

ordinary memory, via the Store Multiple Access Controller (SMAC) , and 
the memory of the processor array, via the DAP Access Controller (DAC). 
The execution of array instructions takes place under the supervision of 
the Master Control Vnit (MCV), and in parallel with execution of host 
instructions. The host steals unused DAP memory cydes when access is 
required. 

The 2900 has a virtual memory architecture, enabling the physical DAP 
memory to be allocated anywhere within the virtual address space of a user 
of the host machine. The DAP memory then behaves as if it were a locked-
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in segment of virtual memory, and normal access permissions (read, write, 
execute) can be specified. 

Input and output from the DAP are controlled by the host, and ordinary 
memory can be made available for the storing of incoming or outgoing DAP 
memory images in order to maximise the utilisation of the array. 

4.1.2 Array architecture 

The DAP unit as a whole, comprises five major functional parts, the Proces­
sor Array, the DAP Access Control Unit, the MCU Registers, the Instruc­
tion Issue Logic and the Array Control Unit. The relationships between 
these units are illustrated in figure 4.2. 

To 
Host 

PC 

Array 
Control 

Figure 4.2 Organisation 0/ the DAP 

Instruction 
Buffer 

(60x32 
wordsl 

The primary route linking components within the DAP is the column 
highway. This 64-bit connection provides a mechanism for moving infor­
mation between the host interface (DAC), or any of the DAP registers, and 
any row of Processing Elements (PEs) in the array. Each PE in the array 
is linked to one bit of the column highway and one bit of the row highway. 
This maps one 64-bit word, as seen by the host, into 64 single-bit entries in 
each row of processing element memories. The row highway enables 64-bit 
words to be transferred between the MCU registers and columns of PEs in 
the DAP array. Similarly, the row highway provides two-dimensional sym­
metry for data movements into and out of the array. The row and column 
highways, and the inter-PE connections are illustrated in figure 4.3. 
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Column Data Lines 

Figure 4.9 PE interconnections and MeU highways 

Each PE has input connections from its four nearest neighbour proces­
sors in the North, South, East and West directions. The mechanism for 
dealing with the connections at the perimeter of the array is explained in 
section 4.1.4. An important feature of the DAP, from the manufacturing 
and construction point of view, is the simplicity and regularity of the array 
of PEs. The relatively low clock speed means that the layout of the process­
ing elements is not critical and, by a careful mapping of the two-dimensional 
array on to printed circuit boards, connections between nearest neighbours 
can easily be kept short. 

The DAP Access Control Unit interfaces the 2900 host to the column 
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highway of the DAP array, allowing the host aeeess to the memory of the 
proeessor array in units of 64 bits. The least signifieant 6 bits of the double 
word address from the host seleets one row of PEs, and the memory assoei­
ated with eaeh one eontributes a single data bit to the read or write eyde. 
Eaeh proeessing element has 4096 bits of memory organised as a 4096 x 
I-bit store. The mapping of bits in the array to bits in the host address 
space is illustrated in figure 4.4. Thus, a 64 x 64 DAP array has a total 

o 

2 
r-~--~~---------------4--~ 

3 
r-~-+--~-------------+--~' 

4 

4095 

t 
BitO Bit 63 

64 x 64 Array af 
Baalean Arithmetic 
Units 

Ward 127 

Array af Bits 
(256 kwardsl 

Figure 4.4 Three-dimensional structure 0/ the DAP store 

storage eapaeity of 256 K Words, or 16 M bits, with one PE assigned to 
eaeh vertieal segment of 4096 bits. 
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The instruetions whieh make up a DAP program are stored in the array 
memory and, as each instruetion is 32-bits wide, two instruetions ean be 
stored per row. This means that two instructions are fetehed every time an 
instruetion feteh eyde oeeurs. Within the instruction issue logic there is an 
Instruetion Buffer, and this is eapable of holding up to 60 instruetions. It 
is used solely during the exeeution of Ioop instruetions, when it is known 
that a group of eontiguous instruetions is going to be exeeuted more than 
onee. 

4.1.3 PE architecture 

The most striking feature about the proeessing elements in the DAP is the 
faet that all operations take plaee on single-bit operands. This leads to a 
very simple PE architecture and permits the eonstruetion of systems with as 
many as 4096 PEs. A simplified view of the internal arehiteeture of a single 
PE is shown in figure 4.5. Eaeh proeessing element eonsists of a single-bit 
adder, an input multiplexer, an output multiplexer and a 4096 x 1-bit store. 
The ALU eonsists of three one-bit registers, the aceumulator Q, the earry 
register C and an actitJity bit A. The aetivity bit is used for loeal enabling 
or disabling of eertain aetions within the PEs, thus permitting a subset of 
the array to take part in whatever eomputation is in progress. 

The input multiplexer seleets data either from the output of one of the 
four nearest neighbours or from the loeal memory, depending on the in­
struetion being exeeuted (see seetion 4.1.4). The output multiplexer seleets 
whieh souree of information is used when writing to the Ioeal memory. The 
options include the output from the loeal adder and the row and column 
highways. 

The single-bit adder performs full addition of the aeeumulator and the 
seleeted input, with an option al earry input. The se lee ted input may be 
eomplemented before addition, enabling subtraetion and logical inversion 
operations to be implemented. The earry-in to the single-bit adder may 
eome from one of two sourees, either the loeal earry register or the earry­
out of the Eastern neighbour, depending on the operating mode of the 
array. This ehoice permits the DAP to perform word-arithmetie in two 
quite distinet ways, either bit-serial (word-parallel) or bit-parallel (word­
serial). These two modes of operation are illustrated diagrammatieally in 
figures 4.6 and 4.7. 

The normal mode of arithmetie in the DAP is bit-serial word-parallel. In 
this mode word values are assumed to be stored vertieally as vectors of bits 
in the z dimension of figure 4.4. A full word operation is programmed out 
as a DO loop, eonsisting of n iterations, for n-bit words. Let us take as an 
example the addition of 64-bit integers, stored as the bit-veetors represented 
by .G, l!. and~. To perform .G + l!. ---+ ~ we must index through these three bit-
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vectors, adding the two operands in bit-serial fashion, and storing the carry 
at each stage in the C register. This sequence of operations can take place 
in up to 4096 PEs simultaneously. Therefore, whilst the time to perform 
a single Integer Add takes many clock cydes, the massive parallelism can 
nevertheless produce very high overall processing rates. 

An alternative method of performing word arithmetic, which issup­
ported by the DAP system software, involves configuring each row of PEs as 
a 64-bit ripple-carry adder. This permits words stored in the x-dimension to 
be operated on directly with a guaranteed carry-propagate speed of at least 
four bit-positions per dock period. Under this scheme the three operand 
addresses are scalar values, addressing a single bit in each row memory. 
Although this method of processing is essentially word-serial within each 
row, the fact that there are 64 rows means that a moderate amount ofword 
parallelism also occurs in this mode. 
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It is possible to compare the performance of these two processing modes, 
and the results for such a comparison are shown in table 4.l. It is dear 
that the bit-serial word-parallel mode yields a much greater maximum per­
formance level than the bit-parallel word-serial mode, and this is due to 
the relatively slow carry-propagate speed compared with the cyde time of 
the carry-save technique used in the bit-serial mode. However, the quoted 
performance figures are for maximum processing rates, and to achieve the 
maximum processing rate in bit-se rial mode requires 4096 concurrent ad­
ditions. Conversely, the bit-parallel mode of operation, whilst achieving 
a meagre 25 MOPS, requires only 64 concurrent additions to achieve this 
level of performance. Therefore, the final column in table 4.1 indicates how 
many concurrent integer additions are required to achieve 1 million integer 

Table 4.1 Comparison 01 DAP processing modes 

Word Bit Max. rate Word parallelism 
parallelism parallelism (MOPS) per MOP 

4096 

64 

1 

32 

213 

25 

19.2 

2.56 
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4.1.4 Instruction set 
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There are several important features of the DAP architecture which heavily 
influence the design of its instruction set. The most notable of these are 

o Bit-serial arithmetic 

o Two-dimensional array topology 

o The MCV registers and the row/column highways 

Coupled with these hardware features is the predominance of FORTRAN 
within the scientific computing community. In FORTRAN the primary 
control construct for coding iterative algorithms is the DO loop, and in 
order to eliminate loop-control overheads the DAP instruction set provides 
a special DO loop instruction. 

Normally, the instruction issue logic fetches instructions from consecu­
tive DAP locations, two at a time, and executes them. Both the fetch and 
execute cydes take 200 ns (for a 5 MHz dock) and therefore each sequen­
tial instruction takes on average 1.5 cydes. When a DO loop instruction is 
encountered, a field in the instruction format identifies how many instruc­
tions there are within the loop and these instructions are assumed to follow. 
When these instructions are fetched on the first iteration through the loop 
they are placed in consecutive locations within the Instruction Buffer, as 
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weH as being placed in the Instruetion Register. On the seeond and sub­
sequent iterations through the loop, no instruction fetch cydes are needed, 
thus saving an average of 1 eyde for every two instruetions inside the loop. 
The size of the Instruction Buffer limits the length of buffered DO loops 
to 60 instructions. The DO loop format also eontains a Count field, which 
may be modified by the contents of an MCU register identified in the Mod­
ifier Register field. This Count value determines the number of iterations 
through the loop. 

The memory addresses used to access operands for instruetions inside 
DO loops may be auto-incremented or auto-decremented, by one, on each 
iteration. This makes for relatively easy indexing through a vertical bit­
vector, and simplifies the implemention of bit-serial word arithmetic. The 
fine control which the programmer has over the bit-level realisation of word 
arithmetic is seen by many as a positive feature of the DAP instruction set. 
It means that highly optimised macro sequences can be generated, for ex­
ample to implement variable word-Iength arithmetic or very high precision 
floating-point operations. 

The DAP instruction format, illustrated in figure 4.8, eontains a 9-bit 
Operation-Code field and this, together with an Inversion bit for selecting 
either a true or inverted input operand, identifies the instruction to be 
executed. The MCU Register field identifies any data register wh ich may 
be required by the instruetion, and the Modifier Register selects one of the 
MCU registers to be used either as a modifier for memory addressing or as 
a source of shift instruction parameters. The movement of data between 
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DAP memory and the MCV registers is also supported in the instruction 
set, and for these instructions one row or column must be specified as well as 
an address within the 4096-bit memory space. This is achieved by providing 
a 7-bit rowjcolumn identifier field and a 7-bit address field within the 32-bit 
instruction format. Both of these fields can be optionally modified by the 
contents of an MCV Modifier register, as illustrated in figure 4.9. 

Another group of very useful instructions are those which perform data 
movement operations between processing elements. These operations make 
use of the two-dimensional square grid of inter-processor links to transfer 
data between the Q registers of adjacent PEs. The shift instructions move 
64 x 64 bits of information in parallel, in any one of four directions, and 
through relative distances of up to 64 grid positions. Shift instructions also 
specify what happens at the boundary elements of the array, and here two 
options are available in each dimension. Either the boundary inputs are set 
to zero and boundary outputs are discarded, or else the boundary inputs 
are taken from the boundary outputs within the same dimension. Hence, 
East may be connected to West and North may be connected to South. 
These four geometries and their relationship to the instruction format are 
illustrated in figure 4.10. 

The DAP approach to scientific software bears some similarity to the 
approach taken by Texas Instruments in their Advanced Scientific Computer 
(TI-ASC), described in volume I section 4.3. Both machines support the 
FORTRAN DO loop in their respective instruction sets to varying degrees of 
sophistication. The TI ASC provides support for triple-nested loops wh ich 
are iterated sequentially. In comparison the DAP has a single-nested loop 
which evaluates all iterations of a double-nested 64 x 64 loop (in the x and 
y dimensions) in parallel. 

4.1.5 Performance 

In this section we look at the performance of the DAP in several ways. 
At the simplest level we examine the raw speed of its component parts 
and compare them briefly with other high performance scientific machines. 
This produces a set of peak performance figures, but does not advance any 
insight into how weIl the machine will perform on a real problem. This is 
remedied by using the simple analytical performance model introduced in 
section 2.2 to predict the performance, firstly of isolated array operations, 
and secondly of pro grams in general. 

It is possible to characterise the raw performance of the DAP in terms 
of the bandwidth of the distributed memory, the serial arithmetic rate and 
the rate of data manipulation through the processing element network. The 
dock period of the production DAP is 200 ns, and in this time it is capa­
ble of performing one memory cyde in each processing element memory. 
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Each memory operation involves one bit, and therefore the raw memory 
bandwidth is 

4096 . 
2 x 10-7 = 20.48 GbltS/S 

This is four times the 80 MWord/s effective memory bandwidth of the 
CRAY-l, although in fairness the CRAY-l also has a very fast set of vector 
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Table ~.2 Instruction timinQs[or the DAP 

Processing rate 
Operation Time (/lS) (MOPS) 

Z+-X 17 241 

Z+-X*S 40-130 32-102 

Z +- X 2 125 33 

Z+-X+Y 150 27 

Z+-VX 170 24 

Z+-X*Y 250 16 

Z +- X/Y 330 12 

Z +-1 Z 1 1 4096 
4096 

S +- I: 280 175 
i=l 

I+-J+K 22 186 

registers which provide all the operands for the computational units. The 
CYBER 205 has a memory bandwidth of 200 MWord/s per Pipe, and hence 
a 2-Pipe CYBER 205 has 25% more memory bandwidth than the DAP. 
This is a fair comparison since the CYBER 205 architecture implements 
memory-to-memory vector operations. 

Arithmetic performance in the DAP is heavily dependent on the chosen 
word length, w; addition and subtraction requiring 0 (w), and multiplication 
requiring O(w2 ) micro-cycles respectively. According to Reddaway [Red73], 
integer addition takes 3w + ~ cycles, where ~ is a small constant value, 
and fractional integer multiplication takes 

w (3w + 13) 
2 

cycles. Floating-point operations require extra cycles due to the exponent 
arithmetic, mantissae alignment and result normalisation. Table 4.2 shows 
the timing, and resulting processing rates for a representative sampie of 
fixed and floating point operations, taken from [Red79]. All operations are 
in 32-bit precision and are hand-crafted, assembler-coded system routines. 
The X, Y and Z values are real arrays containing 4096 elements, S is areal 
scalar value and I, J, and K are integer arrays containing 4096 elements. 

Several points are worth noting from these figures. Firstly, because bit-
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serial algorithms for transcendental functions are very different from their 
equivalent algorithms on bit-parallel machines we find that, for example, 
the time to compute the square root of areal number is less than the 
time to compute the product of two real numbers. The implementation of 
certain functions is trivial; for example, computing the absolute value of 
4096 real numbers takes only 1 J.Ls thus yielding a burst processing rate of 
4096 MOPS. The technique of optimising at the bit level is exemplified by 
the :L operation which, instead of taking 10g2 (4096) x 150 (i.e. 1650) cydes, 
takes only 280 cydes. 

These figures are all based on bit-serial arithmetic. As we have outlined 
earlier, bit-parallel arithmetic is also possible on the DAP, although the 
peak processing rates are much lower and the array is much less flexible in 
this mode. 

A major feature of the DAP architecture is the two-dimensional PE 
interconnection structure. This structure is capable of shifting an array 
of 64 x 64 bits, held in the Q registers at a rate of one shift per dock 
period, exduding instruction startup overheads. Hence, to move a bit of 
information from one memory to another takes 

x+y+A 

dock cydes, where x and y are the relative displacements of the source and 
destination memories within the array and A is a small overhead for in­
struction fetch and memory read/write cydes. The grid of interconnections 
and the Q registers together form a parallel switch with a peak throughput 
of 4096 bit position transfers per dock period, or 20.48 G bit-positions/so 
It is also possible to use the row and column highways to move any single 
row or column of 64-bits into an MCU register, or to move the contents of 
an MCU register into one or all of the rows or columns of the array. These 
data transfer operations can be carried out at a rate of one every 2.5 dock 
periods. This is an extremely powerful mechanism, as it permits the rows 
and columns to be selected, exchanged or broadeast to the whole array very 
rapidly. 

The performance of the DAP on real pro grams ean be gauged by mod­
elling the instruction execution rate as a function of the parallelism within 
the application. This was done in chapter 2 for a generie SIMD array pro­
cessor, and the parameters of the model were chosen to be the same as the 
parameters of the DAP. Consequently the throughput and effideney curves 
in figures 2.7 and 2.9 refer to the DAP. 

4.1.6 The DAP-3 

The DAP arehitecture was revived reeently, when a company called Active 
Memory Teehnology (AMT) designed a new version ofthe DAP using VLSI. 



www.manaraa.com

58 Architecture of High Performance Computers - Volume II 

This maehine, known as the DAP-3, consists of a 32 X 32 array of processing 
elements similar to the processing elements in the original DAP. The dock 
speed of the DAP-3 is expected to be between 80-100 ns. This machine is 
physically much smaller than the original DAP, being housed in a relatively 
smaIl desk-height endosure, and is hosted either by a MicroVAX or a Sun 

workstation. 

4.2 The Connection Machine 

The designers of most of the major and influential high performance ar­
chitectures each had a particular motivating philosophy which underpinned 
their design. For example, the philosophy of IBM 8/360 is one of software 
compatibility aeross a wide performance range. This resulted in designs at 
the top-end of the performance spectrum which incorporated features that 
were transparent to software (pipelining and data-forwarding). Cray ma­
chines, on the other hand, have a design philosophy cent red around intensive 
numeric calculations. Consequently, their machines aIl use vector pipelines 
coupled closely to a set of very fast vector registers in order to minimise 
startup times. The design teams for these maehines made decisions based 
on their collective understanding of what constitutes an 'efficient' comput­
ing machine. Roughly speaking this me ans getting as many instructions 
as possible past the control point per second for as low a cost as possible, 
whilst satisfying numerous secondary design criteria such as physical size, 
power consumption, product-line compatibility, and so on. 

Connection Machine design philosophy 

The design philosophy of the Connection Maehine [HiI85] sets out to chal­
lenge the conventional view of what constitutes an efficient computing ma­
chine, by shifting the emphasis from an obsession with instruction cyde 
times to a more realistic consideration processor-memory bandwidth re­
quirements. In order to process information decisions must be made. In 
effect eaeh decision produces one bit of information. If one analyses a com­
plete computation at the maero-Ievel it is obvious that to make faster com­
puters one must either make the time for each decision shorter or make a 
number of decisions at the same time. Conventional maehines generally take 
the first option, not by choice but because the programming model they are 
pledged to support requires a certain type of machine. The Connection Ma­
chine, in common with all 8IMD-array machines, takes the second option 
and couples a novel parallel hardware structure with a new programming 
style. 

The philosophy of the Connection Machine philosophy is one of remov­
ing the division between processor and memory by placing the processor 
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in the memory to create a cell which is then replicated as a unit to create 
large and highly parallel systems. This form of logic-in-memory machine is 
no different in principle to the ICL DAP, or SOLOMON for that matter. 
What the Connection Machine emphasises is the programmability of the 
connections between processing cells. In this section we describe the hard­
ware structure of the Connection Machine, and in section 5.1.2 we describe 
a parallel version of Lisp for the Connection Machine and look at a typical 
application. 

4.2.1 System architecture 

The prototype connection machine, known as CM-I, is manufactured by 
Thinking Machines Corporation (TMC), and its primary design goals are 
to test out the principles of connection machine architecture, and the CM-I 
is only one of many possible implementations of a connection machinei. 

The system level architecture of CM-I is illustrated in figure 4.11, wherein 
the similarity with the DAP (and most other SIMD array processors) is 
clearly visible. The array of processing elements, comprising a simple 
boolean processor and some local memory, is seen by the host machine 
simply as an extended region of memory. The host computer directs the 
connection machine to implement parallel portions of code, and in this re­
spect it differs from the DAP which has an instruction processor built into 
the array unit. The CM-I host broadcasts a sequence of instructions to 
the array micro-controller, which interprets the instructions and broadcasts 
an appropriate sequence of micro-instructions to the array of PEs, for each 
received host instruction. 

The processor-memory cells, like those of the DAP, are so small and 
slow that individually they cannot perform meaningful computations. In 
CM-I, running CM-Lisp, these cells are linked together in data-dependent 
patterns called active da ta structures. Low-Ievel operations on active data 
structures can be evaluated in parallel by the low-Ievel boolean processors 
acting in concert on their local segments of those structures. This is how 
Connection Machines exploit parallelism and sustain high processing rates. 

Network structure 

An important feature of a connection machine is its support for programm­
able links between PEs. In the DAP, when one processor communicates 
with its Northern neighbour all processors must communicate with their 
Northern neighbour, or not at aIl. This is because the DAP has a static 
square-mesh communication network, which only supports eight routing 
functions. Communication in CM-I is significantly more powerful than this, 

In could be argued that the DAP is also a connection machine. 
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since each group of sixteen processing elements share a link into a packet­
switched binary 12-cube network, as weIl as having individual connections 
to a DAP-like grid (known as the North-East-West-South, or NEWS grid). 
Essentially this means that all PEs can compute the address of a PE to 
which they want to send a message, and then use the 12-cube network to 
route the message in logarithmic time. A two-dimensional grid routes mes­
sages in O(v'N) time, where N is the number of PEs. A full set of NN 
permutations are supported by adynamie binary k-cube network, where 
k = log N, and in the case of CM-l this produces a quoted worst-case 
bandwidth of ~ 3.2 x 107 bits/s and a best-case bandwidth of ~ 1.0 X 109 

bits/so The operation of the CM-l communication network is described in 
section 4.2.3. 

Technology 

The implementation of CM-l relies on a single custom VLSI component 
which contains a group of sixteen boolean processors, a local controller, and 
a message-routing interface to the cube network. This chip is fabricated in 
CMOS technology, and contains approximately 50,000 active devices in an 
area of about 1 cm2• It dissipates around 1 Watt when operated at 4 MHz. 
The local memory for each group of sixteen processors is supplied by four 
4Kx4-bit static RAM chips. 

Each printed circuit board in the CM-l processor array contains 32 
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sets of processor jmemory chips, corresponding to 512 individual cells. This 
also represents the lowest five dimensions within the 12-cube network of a 
65536-cell system. The PCB modules slot into backplanes containing up to 
16 such modules, representing the next four dimensions of the cube. Two 
backplanes constitute a single rack, and each rack contains its own micro­
controller. Four racks together make up a complete system, packaged a cube 
measuring approximately 1.3m on each side. The entire system is air-cooled 
and dissipates about 12 kW. 

Implementing the higher-dimension network connections, between back­
planes and between racks, requires a significant amount of wiring. In 
CM-l this is constructed using controlled-impedance flat cables. Alliower­
dimension connections are routed on the module and back plane PCBs. 

4.2.2 Processing elements 

The processing element of CM-l is a completely general-purpose single-bit 
processor with a private 4K X I-bit memory. Whereas in machines like the 
MPP and STARAN special architectural features, such as shift registers, 
are introduced to support integer multiplication, in CM-l the processor cell 
is kept as simple as possible. It is also highly programmable. 

Figure 4.12 shows the logical structure of a CM-l processing element. It 
consists of a single-bit arithmetic and logic unit, a file of sixteen single-bit 
registers (calIed flags) and connections from the local memory to the ALU 
and from the flags to the message router. The ALU is capable of realising 
all 256 possible boolean functions of three inputs (two memory operands 
and one flag) , and it does this for both the value to be written back to 
memory and the value to be written back to one of the flag registers. This 
requires a total of sixteen bits of control input to the ALUs. In addition, 
the PE microcontroller must also specify the following parameters for each 
operation. 

1. A-address and B-address. The two memory operand bits are read 
from the A and Baddresses and the memory output from the ALU is 
written back to the A address location. 

2. Read and write flag addresses. These specify one input flag for the 
ALU, and one flag register to which the flag output from the ALU is 
written. 

3. Condition flag address. Specifies which of the sixteen flags is to be 
used to determine whether a conditional operation will take place 
locally. 

4. Condition sense. Selects either active-high or active-Iow state for the 
condition flag selected. 
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5. NEWS direction. Specifies which of the four 2D mesh permutations 
is selected for operations involving the NEWS grid. 

The fiag register file contains eight general purpose fiags and eight spe­
cial purpose flags. The special purpose flags provide links between the ALU 
(and hence memory) and the interconnection networks (that is, the NEWS 
grid and the router). For example, one read-only flag contains informa­
tion written from the flag output of the neighbouring ALU in the direction 
specified by the NEWS direction controls. The sixteen PEs in each CM-
1 processor chip can also be linked to form a chain of processors, as weIl 
as a square mesh, and this permits (rather slow) carry propagation across 
16-bit slices of processing elements. So, whilst the design of the processing 
elements is not highly optimised for speed, the fiexibility of the ALU and 
the fiags together compensate somewhat, and the massive replication of the 
PEs puts their combined power of about 109 integer 32-bit additions per 
second, weIl into the supercomputer category. 

4.2.3 The router 

Each group of sixteen PEs shares a single message router, which itself con­
stitutes one node in a binary k-cube network. In CM-1 k = 12, and so 
there can be a maximum of 4096 routers, with each router being connected 
directly to twelve other routers. For a formal description of the binary k­
cube network topology and routing functions see section 3.3.1. The main 
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Figure 4.19 CM-1 message format 

point to note here is that proeessors whose node addresses differ in only 
the ith bit-position have a direet eonneetion in the ith dimension of the 
eube network. Sinee any two addresses ean only differ in a maximum of 
twelve bit-positions (that is, one is the inverse of the other) there ean be at 
most twelve unique links forming a path between them. Henee, in a k-eube, 
no pair of nodes is separated by more than k links. We now deseribe the 
operation of the packet-switehed CM-l network. 

Routing algorithm 

The routing algorithm used in CM-l is based loosely on the standard routing 
functions for binary k-eubes deseribed in seetion 3.3.1. The message format, 
shown in figure 4.13, eonsists of an address and a data field, with a one­
bit separator and a single trailing parity bit. The address of a message 
eomprises a relative router address field (12 bits), a PE address within a 
group of sixteen (4 bits), and an address in the memory of the destination 
proeessor where the message is to be depositedon delivery (12 bits). Router 
addresses are said to be relative beeause they speeify the distanee to be 
moved in order to get from the souree to the destination proeessor. Henee, 
a 1 in bit position i indieates that the message must be routed through 
dimension i before it ean arrive at its destination. Conversely, a 0 in bit 
position i me ans that no routing through dimension i is required. Therefore, 
when an address is all zeros the message must be at its destination. Also, 
when a message is routed through dimension i towards its destination, bit i 
must be clearedj and when routed away from its destination, bit i must be 
set. 

In the terminology of the designers of CM-1, eaeh parallel message de­
livery eyde eonsists of a sequenee of repeated petit cycles. In a single petit 
eyde all messages whieh do not eneounter routing delays (eaused typieally 
by eontention in the network) will be delivered. These petit eydes are re­
peated until all messages within a 'burst' of messages have been delivered. 
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Message bursts are normally associated with 'beta reduetion' operations 
(see seetion 5.1.2). Eaeh petit eycle eonsists of a sequenee of twelve dimen­
sion eycles, and du ring the ith dimension eycle messages are routed (where 
required and where possible) through the ith dimension. 

The injeetion of messages into eaeh router oeeurs at the beginning of 
eaeh petit eycle, but no more than four messages ean be injeeted into eaeh 
router on eaeh eycle. This number may be redueed if insufficient buffer­
ing spaee is available in the router, sinee routers operate on a store-and­
forward prineiple. This all means that eaeh router must make deeisions on 
whieh messages are aeeepted for injeetion, and on whieh messages are to be 
given priority for forwarding along eonneeted links. The router does this by 
searehing its buffers of pending messages during the ith dimension eycle to 
discover which messages have bit i = 1 in their relative node address field. 
An ith-bit set indieates that the message needs to be routed on the ith 
output link. The router ehooses the 'oldest' such message, essentially im­
plementing a first-eome, first-served, poliey. It is worth noting that whilst 
twelve routing functions must be applied to a message (so me of whieh may 
be null) before it ean be delivered, there is no ordering on the evaluation of 
these funetions. Therefore, if a message is bloeked du ring the first dimen­
sion eycle it ean still be routed on the remaining eleven dimension eycles, 
subjeet of course to further bloekages. However, it eannot be delivered until 
the first dimension eycle has been repeated sueeessfully, and this takes at 
least one whole petit eycle. 

Sinee routers ean aeeept injeeted messages regardless of the bloekages 
they may eause further on in the routing eycle, there is no obvious upper 
bound on the degree of store-and-forward buffering required at each node 
to eope with network eongestion. The router is clearly hardware limited, so 
an oeeasional overflow meehanism must be provided. The meehanism used 
in CM-1 is ealled referral, and entail sending overflowed messages along 
'unused' but ineorreet links, effeetively taking them further away from their 
destination. To do this the router simply seleets an unused output dimen­
sion and sets the eorresponding bit in the relative node address field for 
that message. 

Referral also provides a means of supporting fault-tolerant networks. 
Failure of one node in the 12-eube network simply results in a permanent 
bloekage of the 12 links to whieh it is attaehed. The adaptive routing poliey 
then eauses messages to be routed around the offending node, with some 
time penalty of course, but in a manner transparent to the software. 
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Network performance 

The performance of the interprocessor communication network in the DAP 
is easy to analyse since all permutations are homogeneous2 • However, in 
the Connection Machine routing functions are not homogeneous, and hence 
the distribution of message addresses can have a major effect on the net 
communication bandwidth. 

It follows from the routing algorithm that the number ofinter-nodal hops 
that a message must make is equal to the number of 1 's in the destination 
address. Uniformly distributed message addresses will have a mean of n/2 
1 's, where n is the number of bits in the address. Only one message can 
occupy each link during a single petit cyde, and during each dimension 
cyde only one twelfth of all communication links can be active. This is not a 
particularly efficient use of wire, the component which most severely limits 
the extensibility of cube-connected architectures. From the assumptions 
above we can predict the sustainable bandwidth of the network. A cube 
network with N = 2n no des has nN = n2n wires in total. Since the number 
of 1 's in all message addresses can only be changed to O's at a rate of one 
per wire per petit cyde, in its steady-state the network cannot accept more 
than n2n injected address bits which are 1. This means it cannot accept 
more than twice this number of uniformly distributed messages. Thus there 
can only be 2N injected messages, or two injected messages per node, in 
each petit cyde. 

The network does however contain some message buffering, and so at the 
beginning of a burst of messages the message-injection rate can be higher 
than two per node in each petit cyde. Higher levels of message injection 
can also be sustained when message addresses are localised. This must be 
considered when allocating elements of an active data structure to process­
ing cells. Some operations naturally require local communications only. For 
example, steps in each beta-reduction operation specify near-neighbouring 
processors, and hence the number of 1 's in each message address is just 1. 

Another important consideration for message delivery in an SIMD sys­
tem is that each burst of messages only terminates when alt messages have 
been delivered. Where routing conflicts occur, additional petit cydes must 
be provided during the latter stages of the burst. Since all messages destined 
for the same node must be delivered sequentially, the maximum number of 
messages going to any one node during a burst of messages defines the 
number of additional petit cydes that will be required. Fortunately for the 
Connection Machine there are only a moderate number of destination pro­
cessors per network node (sixteen in CM-I), and during most operations 
only one or two messages are destined for the same processor. 

2In other words, all processors communicate using the same routing function. 
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4.3 Summary 

In this chapter we have examined the architecture and operational charac­
teristics oftwo SIMD array processors: the ICL DAP, and the TMC Connec­
tion Machine. The DAP uses a significantly more conservative technology 
in its implementation than the Connection Machine, has considerably fewer 
processing elements, and occupies a much greater physical space, than the 
Connection Machine. However, this is to be expected since the DAP pre­
dates the Connection Machine by about ten years. So, what advances in 
the architecture of SIMD array processors du ring those ten years have been 
assimilated into the Connection Machine? The answer is, not very many. 
The major difference of course is the binary 12-cube interconnection net­
work and its associated adaptive message-routing algorithm. However, this 
could be emulated by the square-grid connections of the DAP. The major 
advance is purely technological, in the form of a higher level of integration. 

The architects of the Connection Machine claim than logic-in-memory 
(LIM) machines such as CM-l overcome the von Neumann bottleneck by 
replicating the processor-memory interconnection many times. However, 
this is only true for operations wh ich are massively parallel, and all op­
erations executed by the host computer are still limited by this problem. 
Furthermore, SIMD array processors have high values for nl/2 (for a defi­
nition see volume I, chapter 10), which are typically N /2 for N processing 
elements. Some would say that this does not matter since each PE in an 
SIMD array machine is so much smaller than the unit of parallel hardware 
in other SIMD architectures. In effect, the utilisation of processing elements 
in a LIM machine should be compared with the utilisation of the memory of 
other parallel machines rather than the utilisation of the processing parts. 
This produces a far more favourable comparison, since as we observed at the 
beginning of chapter 2, the memory utilisation of SISD machines and vec­
tor machines falls as these machines become more powerful - but remains 
constant in LIM machines. 

These sentiments must be tempered with a little objeetivity, however, 
and it is clear that applieations with only moderate quantities of data-Ievel 
parallelism are better suited to veetor maehines with low values of nl/2 

rather than massively parallel array maehines. As we shall see in the next 
ehapter, massively parallel applieations ean gain a great deal from the use 
of the types of machine described in this chapter. 
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An appreciation of SIMD-array architectures is not complete without at 
least an overview of the types of languages and algorithms that have been 
developed for these machines. One of the most striking features of almost 
all SIMD-array machines is the way in which moderate to large amounts of 
data-level parallelism need to be explicitly described by the applications pro­
grammer, and this impacts on the design of both languages and algorithms. 
For the language designer these machines present a problem; how should the 
parallelism in the architecture be made visible to the programmer? Should 
the structure of the architecture be reflected in the langauge to give the pro­
grammer complete control of the hardware, or should the language provide 
a machine-independent interface to improve software structure and porta­
bility, albeit at some reduction in absolute performance? Some languages 
do attempt to provide a high level of abstraction, CM-Lisp for example, 
whereas others constitute what can only be described as augmented assem­
bler language, for example DAP Fortran. Between these two extremes exist 
languages such as Actus, a language based around Pascal but with exten­
sions for defining and operating on parallel data objects. In this chapter we 
examine the facilities within both CM-Lisp and DAP Fortran for defining 
parallel data objects and for performing parallel operations on them, and 
then go on to consider representative algorithms for each machine and look 
at how they can be expressed in their respective languages. 

5.1 Array processing languages 

Distributed processor arrays support a particular type of parallelism which 
is often referred to as data-Ievel parallelism. In this type of parallelism in­
dividual instructions are executed strictly in sequence, but each instruction 
can be applied to a large number of data objects in parallel. Ta exploit 
this kind of architecture from a high-level language requires features for 
declaring data structures upon which such operations can take place, and 
for expressing parallel operations on these data structures. The features 
provided may reflect the architecture of a particular machine very closely, 
as in the case of DAP Fortran, or may provide a more abstract interface to 
the parallel machine architecture, as in the case of CM-Lisp. In general, an 
abstract interface is desirable since it masks the hardware details from the 
programmer and this encourages the production of portable software. 

67 
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In DAP Fortran, the data structures upon which array operations take 
place are conventional Fortran vectors and matrices. The operations avail­
able correspond directly with the functions provided by the instruction set 
of the DAPj such a language is little more than an extended assembler. 
Conversely, in CM-Lisp, a special data type is introduced to represent col­
lections of Lisp objects upon which parallel operations can take place, and 
special notations for applying functions to these collections of objects are 
defined. 

The aim of the following sub-sections is to impart something of the 
ftavour of these two languages without attempting to provide complete de­
scriptions of the many features in these languages which are not directly 
relevant to the design of array processor architectures. The interested reader 
is encouraged to follow up the references cited for each language. 

5.1.1 DAP Fortran 

In DAP Fortran the primary data types are scalars, vectors and matrices, 
and these relate directly to the physical storage layout of the DAP (see 
section 4.1). The size of the DAP array is fixed at 64 X 64 processing 
elements l and, to permit a trivial mapping of vector and matrix elements 
to the DAP array, the language assumes that all vectors are 64 elements 
long and that all matrices contain 64 such vectors. Consequently, array 
bounds do not need to be specified in variable declarations. For example: 

DIMENSION W(), X(,), Y(,21), Z(,,7) 

This statement declares W to be a vector of 64 elements and X to be a 64 x 64-
element matrix. In addition, Y defines 21 64-element vectors and Z defines 7 
64 x 64-element matrices. Note, this convention makes the mapping of large 
matrices and vectors to the store of the DAP the explicit responsibility of 
the programmer. 

Within vectors and matrices individual sub-structures can be specified 
by including or omitting subscripts as folIows. 

xO 
X(2,) 

X(,6) 
X(4,l) 

the whole of X 
the second row vector of X 
the sixth column vector of X 
the scalar value X(4 ,1) 

This extends naturally to include structures with more than two dimensions. 
Another useful method of selecting elements of a vector or matrix is to define 
a boolean control vector, and use it to index the vector or matrix, thus: 

1 With the exception of the recent AMT DAP-3, wh ich has a 32 x 32 array of processing 
elements. 
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REAL DVEC() , DMAT(,) 
LOGICAL CVEC(), CMAT(,) 

69 

It is possible to select a subset of the elements of vectors and matrices by 
writing DVEC(CVEC) and DMAT(CMAT). Only elements of DVEC and DMAT at 
index positions coinciding with true values in the control vector or matrix 
will be selected. The implementation of this relies on the conditional form 
of array instructions described in section 4.1.4. 

A major feature of the DAP is the way in which processing elements 
(PEs) are connected in form of a square mesh. If each PE holds one ele­
ment of a 64 X 64-element matrix then an obvious feature for the language 
to support is the alignment of data by means of the near-neighbour con­
nections. In terms of vector and matrix data types this means applying a 
simple linear transformation to the index of every element, effectively either 
adding or subtracting one from an row or column indices simultaneously. 
This can be expressed in DAP Fortran as: 

DMAT(+,) 
DMAT(-,) 
DMAT<. +) 
DMAT<' -) 

= shift an elements upward 
shift an elements downward 
shift all elements to the right 
shift aB elements to the left 

What happens at the boundary of the array during alignment operations de­
pends on the currently selected geometry. The columns running from North 
to South, and the rows running from West to East, can each be connected 
either in a PLANAR or a CYCLIC geometry, corresponding to the geometry 
specification of DAP shift instructions (see figure 4.8 on page 52). Align­
me nt by more than one position can be specified by the SHIFT statements. 
There are eight of these, one for every combination of direction and geom­
etry. Hence to shift a matrix DMAT along the positive diagonal by I places 
can be done using SHift South Planar and SHift East Planar alignments, thus: 

SHSP(SHEP(DMAT,I) ,I) 

One of the most useful features of the CYBER 205 and CRA Y vector 
architectures is the way in which conditional expressions within loops can 
be vectorised by using contral vectors (see volume I, chapters 7 and 9). This 
permits statements of the form 

DO 10 I = 1, 1000 
IF A(I).GT.THRESHOLD THEN 

B(I) = S * C(I) 

10 CONTINUE 

to be compiled to a sequence of two instructions; one to evaluate the control 
vector, and one to compute S*C (I), storing the result in B if and only if the 
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Ith element of the control vector contains a 'true' value. A similar feature is 
available in DAP Fortran whereby an array of LOGICAL values can be used 
to index an array of data values on the telt-hand side of an assignment, thus: 

LOGICAL GTHAN(,) 
REAL AMAT(,), BMAT(,), CMAT(,), S 

GTHAN = AMAT .GT. 0.0 
BMAT(GTHAN) = S * CMAT(,) 

These mechanisms are fine for manipulating arrays explicitly, but when 
the application task does not decompose naturally into arrays, and array­
like operations, a more general solution must be found. 

5.1.2 CM-Lisp 

In the same way that DAP Fortran comprises standard Fortran with exten­
sions to handle SIMD data structures and operations, the version of Lisp 
designed for the Connection Machine uses Common Lisp as a base language 
and augments this with several novel features. CM-Lisp introduces a new 
data type known as the Xector, and Xectors constitute the operands of all 
parallel operations. A Xector can be thought of as a set of values, with each 
value stored in a unique processing element. Each element ofaXector is 
identified by a unique label, which in practice would be either the address 
of the horne processing element or a unique tag to be associated with the 
value in the horne processing element. A Xector therefore defines a mapping 

in which the domain and range are both elements of the powerset of Lisp 
objects. For example, the following is a Xector. 

{sky -t blue grass -t green apple -t red} 

Note, the humble vector can now be seen as a special case of the Xector in 
which the domain is simply a set of contiguous integers, for example: 

{O -t 1.3 1 -t 4.7 2 -t 6.8} 

Vectors such as this can also be written in a shortened form which omits 
the domain values. 

{O -t 1.3 1 -t 4.7 2 -t 6.8} == [1.3. 4.7. 6.8] 

Xectors can also be interrogated, given adefinition ofaXector called 
colour-of as the following: 

(SETQ colour-of . {sky -t blue apple -t red grass -t green} 
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it is possible to extract the 'colour' of an apple, using the XREF function, 
thus. 

(XREF colour-of 'apple) => red 

Alpha notation 

When a Lisp expression is preceded by a, it is interpreted as a Xector 
in which the range consists of only the constant value produced by the 
expression. So, for example, 

a3 => {-t 3} produces a Xector where all domain values map to 3 

a+ => {-t +} pro duces a Xector of 'plus' functions 

Parallel operations as we know them in SIMD machines can be specified by 
applying a Xector of functions to a pair of Xector operands. For example, 
the add function can be applied in parallel to a pair of Xectors where the 
range type are either fixed or floating-point numbers as shown below. 

(a+ '{a -t 1 b -t 2} '{a -t 3 b -t 3}) => {a -t 4 b -t S} 

It is possible to factor out the alphas to make expressions more readable, 
for example: 

(a+ a1 a2) a(+ 12) 

However, if X and Y are Xectors, then • can be used to nullify the effect of 
an alpha, thus: 

(a+ X Y) 

This form of notation is comparable with the 0 and (,) notation in DAP 
Fortran, but is slightly more powerful since the size of each parallel data 
object is not restricted. Expressions involving alpha notation create objects 
on demand, and so the effect of writing a+ is to create as many scalar plus 
functions as there are parallel data operands. 

Beta reduction 

Alpha notation is useful for specifying functions on independent data objects 
that can be executed in parallel. Conceptually, both the operands and 
the results are distributed throughout the array of processing elements. 
Therefore Alpha notation is only capable of expressing parallel functions of 
the form: 
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Xeetor x Xeetor x '" x Xeetor 1---+ Xeetor 

Some other meehanism is therefore required to permit elements ofaXeetor 
to be combined if the fuH range of operations on Xectors is to be supported. 
Consider for example the veetor dot-product operation used extensively in 
numerical algorithms. If vectors are represented as Xectors, then performing 
the multiplication step is trivial. 

Forall i do A[i] * B[i] 

Rowever, alpha notation is not eapable of expressing the cumulative reduc­
tion phase, in which elements of the result Xector from the above operation 
need to be combined using the 'plus' function to produce a single scalar 
result. This is where ß-reduction becomes important. 

Beta-reduction expressions require three arguments; a combining fune­
tion and two Xector operands. They return a third Xector in which the do­
main consists of the set of values in the range of the second Xector operand. 
The range includes those values in the range of the first Xector operand for 
which the domain values are in the range of the second Xector operand. 
Where two or more values in the range of the second Xeetor operand are 
identical the combining function is applied to reduce the corresponding val­
ues in the range of the first Xector operand to a single value. This all 
sounds rather tortuous, but can be readily understood with the aid of a 
simple example. 

(ß '{1-+ 12 -+ 33-+ S} '{1-+ A 2 -+ B 3 -+ B}) => {A -+ 1 B -+ 8} 

If the second Xector is null (or not specified) then alt values in the range of 
the first Xector are combined, and the result is a scalar Lisp object. Now 
the vector dot-product can be expressed as: 

(ß+ (a* X V)) 

The theoretical minimum number of parallel applications of any dyadic 
cumulative reduction function is [Iogz n 1, where n is the number of val­
ues which must be combined. Given appropriate parallel hardware, where 
the depth of the inter-processor connection network is O(log n), this lower 
bound on computation time ean be approached by ß-reduction expressions. 

The production version of Lisp for the Connection Machine is known 
as *Lisp, and uses slightly different syntactic marks to identify the special 
features of Connection Machine Lisp. The interested reader is referred to 
Rillis 1985 [RiI85] or [TMC86]. 
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5.2 Algorithms for array processors 

The purpose of this section is to consider the types of application algorithm 
that are suitable for efficient implementation on distributed SIMD processor 
arrays, and introduce some general principles for the design of algorithms 
for such systems. 

In general, for an algorithm to be suitable for a large-scale distributed 
processor array, it must contain a significant quantity of data-Ievel parallel­
ism. Often there will exist sequential algorithms for a problem under con­
sideration, and a simple inspection may reveal extensive data structures 
and extensive, independent operations. Such sequential algorithms are use­
ful starting points from which to begin the design of a parallel (SIMD) 
algorithm. 

One of the most important design considerations with distributed array 
algorithms is data decomposition. Since processing elements only have direct 
access to data stored locally, a sensible distribution of data between proces­
sors is essential for efficient processing. But what is a sensible distribution 
of data? 

Although the answer to this question is highly dependent on the prob­
lem being considered, a few general rules can be observed. Firstly, when 
designing an algorithm which requires the distribution of data, the overrid­
ing consideration must be in maximising the independence of data stored in 
distinct processors. An examination of the granularity which results from 
each candidate distribution will provide an indication of how much data 
alignment (the SIMD equivalent of inter-processor communication, as dis­
cussed in section 6.1.2) is required in proportion to parallel array operations. 
In general, the granularity should be maximised. 

Another important design criterion is the topology of the inter-processor 
communications network, since this determines the types of data alignment 
which can be performed efficiently. More often than not the primary lan­
guage used on each machine will restrict the user to those operations which 
are supported directly in hardware, making the choice of system somewhat 
dependent on the intended applications. 

The performance distinctions between different SIMD network topolo­
gies can be observed readily by considering the implementation of Beta 
reduction operations on two different network topologiesj the square mesh 
and the binary k-cube. 

The type of ß-reduction in which we are interested is similar to the 
vector sum-of-products function shown below. 

s := 0; 

Forall i do 
s := s + a[i] * b[i] 
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On a square mesh topology, with North, South, East and West data align­
ments, and with yn X yn processing elements, a suitable reduction scheme 
could be as folIows. 

Assurne that the values of a Ei] and b Ei] are distributed such that each 
processing element has at most one element of each vector, and that the 
individual products can be formed in a single step. The algorithm outlined 
below will enable the sum of these products to be computed using only 
the orthogonal alignments provided by the hardware; notably single pI ace 
plan ar shifts in the North, South, East and West directions. 

1. Define yn partial sum variables, one located in each processing el­
ement of the left-most column. Initialise them with the product of 
a Ei] * b Ei] produced locally. 

2. Shift the column of partial sums one place to the right and add in the 
products found in the new local processing element. 

3. Repeat step 2 until the partial sums are in the right-most column. 

4. Shift the partial sum located in the top-right processing element down 
by one place and add in the partial sum from the processing element 
into which it moves. 

5. Repeat step 4 until the partial sum is in the bottom-right processing 
element. 

6. The partial sum in the bottom-right processing element contains the 
sum-of-products. 

A simple analysis ofthis algorithm indicates that it takes 2(yn-l) align­
me nt steps, and that the array operates in parallel during only half of the 
steps. Furthermore, when the array is operating in parallel the parallelism 
is only Yn. However, this is asymptotically optimal for a two-dimensional 
square mesh topology. This fact can be verified intuitively by observing 
that all products, or partial sums in which they are included, must be 
combined at some point in the algorithm, and the maximum separation of 
any two products is 2(yn - 1) inter-processor links. Hence, the execution 
time of this algorithm is bounded below by the restricted communication 
bandwidth provided by a square mesh network. 

On a binary k-cube topology, with n = 2k processing elements (where 
k is an integer) and a one-to-one correspondence between products and 
processing elements, the sum-of-products can be formed in the following 
way. 

1. Let processing elements be identified by binary labels (addresses) of 
the form ak •.• al, and let there be two label variables in each PE 
called mask and dimension. 
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2. In each PE set mask = 1 ... 1 and dimension = 10 ... 0 

3. For all PEs with labels (interpreted as unsigned integers) that are less 
than or equal to mask perform steps 4 and 5. 

4. If the local label logically ANDed with dimension is equal to dimension 
then transmit the local partial product to its nearest neighbour in 
dimension i else receive a partial product from dimension i and add 
it to the local partial product, where i = log2(dimension). 

5. Shift arithmetically the mask and dimension variables one pI ace to 
the right in each PE. 

6. Repeat steps 3, 4 and 5 until mask is zero. 

Again, an analysis of this simple algorithm is relatively straightforward. 
Each of steps 3, 4 and 5 can be assumed to take constant time, and are all 
repeated k = log2 n times. The parallelism at each stage is equal to mask + 
1, and this halves after each iteration. The computational power of binary 
k-cubes in SIMD architectures should be apparent from this elementary 
example, for as weIl as having an ability to process independent data items 
in parallel they can combine distributed data items in logarithmic time, and 
this is known to be asymptotically optimal. 

5.2.1 Partial differential equations 

In this section an indirect algorithm to find a solution to a set of partial 
differential equations (PDEs) is used as an example of how a highly struc­
tured problem can be mapped to a mesh-connected SIMD array, such as 
the DAP, using a primitive parallellanguage such as DAP Fortran. Whilst 
it is not the purpose of this book to discuss algorithms for parallel machines 
in any great detail, so me background to the techniques for solving PDEs is 
required in order to appreciate the choice of algorithm. 

A linear second-order PDE in two independent variables has the general 
form 

82 4> 82 4> 82 4> 84> 84> 
A 8x2 + B 8x8y + C 8y2 + D 8x + E 8y + F4> = G 

where the coefficients A through G can be dependent on x and y, but 
must be independent of 4>. This general form covers a number of important 
equations which characterise problems in engineering and physics, such as 
diffusion, gravitational and electrical potential, Schrödinger's Equation, and 
many more. 

Numerical solutions to PDEs can be found by using finite difference 
methods [FW60], and since these involve large numbers of computational 
steps they are likely candidates for parallel processing. For equations in 
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two independent variables (x and y) the solution-space is represented by an 
n X n array of points (representing values for ifJ), spaced equally in the x 
and y dimensions. There are two general methods for arriving at a solution; 
direct and indirect (often referred to as iterative). Direct methods involve 
a fixed number of computational steps, and are certainly faster than indi­
reet methods. However, when the number of points in the solution-space 
becomes large the computational errors for direct methods become unman­
ageable. The amount of parallelism in direct methods is therefore somewhat 
restricted. With indirect methods an initial estimate to the solution is made, 
from wh ich successive refinements are computed iteratively. Various tech­
niques for computing the refined values for ifJz,1I are possible, and the choice 
of which one to use depends heavily on the resultant rate of convergence. 

In the finite difference method a set of algebraic difference equations 
relates the value of a single point in the solution-space to its nearest neigh­
bours in the x and y dimensions according to the values of local coefficients 
derived from the coefficients of the PDE. A simplification of the general case, 
known as the model problem, relates the refined values for the solution-space 
to the old values according to the following recurrence. 

ifJ' = ifJz-l,1I + ifJz+l,1I + ifJz,II-1 + ifJz,II+l 
z~ 4 (5.1) 

Jacobi's method for producing a converged solution involves computing 
all values of ifJ' simultaneously, and consequently contains a large amount of 
parallelism. However, it has been shown [Var62] that this method converges 
very slowly. The convergence rate can be improved by using a technique 
known as successive over-relaxation (SOR), whereby the new value at a 
point in the solution-space is defined as the weighted sum of the old value 
and the new estimate. In addition, new values are used in the calculation 
of other new values, within the same iteration, as soon as they have been 
computed. This pro duces a rapidly converging solution, but unfortunately 
the recurrence relation between ifJ values within the same iteration makes 
this method essentially sequential. 

Several ways of partitioning the points to weaken the recurrence rela­
tion exist, for example one could compute all even-numbered lines in the 
x-y plane in parallel, followed by all odd-numbered lines (SOR by lines). 
One could compute all rows of points in parallel and then all columns 
of points in parallel, and this is known as the alternating direction im­
plicit (ADI) method. However, a method which is particularly well-suited 
to the DAP architecture, where communication takes place with near­
neighbouring elements only, is odd-even ordering with Chebychev acceler­
ation. This is also known variously as the chequer board algorithm or the 
red-black algorithm. 
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The odd-even algorithm operates by partitioning the points into two 
disjoint sets; those for which :z: + y is odd, and those for which :z: + y is even. 
It then operates by calculating all odd points in parallel, followed by all even 
points in parallel. This is equivalent to visualising the points in the solution­
space as squares on a chequer board, and processing all the red squares in 
parallel, followed by all the black squares. Chebychev acceleration is simply 
a method for adjusting the over-relaxation weight after each set of odd or 
even points have been updated. 

It is now possible to consider a concrete algorithm for computing the 
PDE solution using odd-even ordering with Chebychev acceleration. This 
is first expressed using an informal step-wise notation, and secondly as a 
sub-program unit in DAP Fortran. 

1. Define two distributed matrices of LOGICAL values to enable the odd 
and even locations in the solution-space to be selected independently. 

2. Generate an initial approximation to the solution, and calculate the 
number of iterations that are required for a given level of accuracy in 
the final solution. 

3. For all odd points in the solution-space calculate the new estimate and 
the new over-relaxed value, and update each point using a weighted 
sum of these values. 

4. Re-calculate the over-relaxation weight. 

5. Perform step 3 again, but this time operate on the even points only. 

6. Re-calculate the over-relaxation weight. 

7. Repeat steps 3 to 6 for the required number of iterations. 

Let us now analyse this algorithm to ascertain the degree of parallelism it 
contains. Steps 1 and 2 are initialisation steps and can be ignored. Steps 3 
to 6 comprise the main iterative loop, and contain two parallel calculations 
and two scalar calculations. The parallel calculations (steps 3 and 5) involve 
the computation of new estimates for 4>zll in half of the 64 X 64 array of 
processing elements (assuming the size of the problem is exactly 64 X 64) 
and therefore has a parallelism of 2048. 

The calculation of each new value involves what is sometimes described 
as a cross-point calculation corresponding to equation 5.1, and this can be 
expressed quite concisely in DAP Fortran using data alignment notation as 
follows. 

0.25 * (U(-,) + U(+,) + U(,-) + U(,+)) 
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This requires four shift operations which must be performed sequentially, 
four floating-point Add operations, and a floating-point multiply operation. 
In addition to this, the new estimate must be weighted and added to a 
weighted version of the old solution. Again, these weighting and addition 
operations ean be performed in all odd (or even) PEs eoneurrently. The 
sealar operations consist of the re-calculation and distribution of the new 
weight after eaeh half-iteration. There are two ways in whieh these eould 
be implemented. Either the sealar part of the maehine ealculates the new 
value for W onee only and distributes it serially via the row (or column) 
highway, or each processing element calculates its own private copy of W. 

The second method involves a large number of 'redundant' computations, 
but avoids the distribution phase, and for some tasks this approach may 
actually be faster. 

A skeleton of a DAP Fortran routine to compute this algorithm is pre­
sented below. To aid readability the initialisation parts and the weight 
ealculations are commented out. 

INTEGER I, ITERATIONS 
REAL Ue.), W 
LOGICAL ODD(,), EVEN(,) 
- initialise the ODD and EVEN mask variables 
- initialise the weight W 
- calculate the number of iterations required 
DO 10 I = l,ITERATIONS 

U(ODD) = (l-W)*U(,) + W*0.25*(U(-,)+U(+,)+U(,-)+U(,+» 
- calculate new value for W 
U(EVEN) = (l-W)*U(,) + W*0.25*(U(-,)+U(+,)+U(,-)+U(,+» 
- calculate new value for W 

10 CONTINUE 

The main points to note about this algorithm, and its implementation on a 
machine like the DAP, are that its strueture fits the arehitecture very weIl 
ahd that DAP Fortran simply provides a means of expressing it suecinctly. 

This is an example of an algorithm whieh is weIl-suited to the maehine 
on which it is implemented, but there are many parallel algorithms for which 
the mapping to a square mesh arehitecture in not quite so obvious. Nev­
ertheless, teehniques for implementing more sophisticated data alignments 
on a square mesh exist, although these eneounter a simulation slow-down 
factor whieh in some eases ean be significant. 

The Connection Machine (section 4.2) supports hypereubic connections 
between groups of processing elements, as weIl as a square mesh network 
(known as the NEWS grid), and together these make the Connection Ma­
chine a very flexible SIMD architecture. In order to appreciate this we 
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now examine how the Connection Machine, and CM-Lisp, can be used to 
implement an elementary graph algorithm in parallel. 

5.2.2 Minimum path length 

Numerical applications, such as partial differential equations, are not the 
only types of application with significant amounts of data-level parallelism. 
There are a great many manipulative algorithms involving sorting, searching 
and dictionary operations which are also inherently parallel. Many impor­
tant problems can be modelled in terms of graph structures, for which there 
are mature sequential graph algorithms as weIl as an increasing number of 
parallel algorithms. Such non-numerical applications are known collectively 
as symbolic algorithms, since their prime concern is in the arrangement of 
symbolic objects rather than the arithmetic combination of floating-point 
values. In this section we discuss the implementation of an SIMD algorithm 
for finding the shortest path between any two vertices of an arbitrarily con­
nected graph. The language chosen to express this parallel algorithm is 
CM-Lisp, and this is chosen in order to emphasise that with a reasonably 
high level of data abstraction it is possible to describe parallel activities in 
a succinct and machine-independent manner. 

Let us first consider how one might compute sequentially the minimum 
path length between a single source and a single destination vertex in a 
graph G = (V, E), where V is a finite set of vertices and E is a finite set 
of edges. Let us assume that G is an unweighted connected graph, since 
this simplifies the solution without significant loss in generality. Moore's 
algorithm [Mo059] for finding the shortest path from a single source ver tex 
to all other vertices is a suitable sequential algorithm, and thus forms the 
basis for the parallel SIMD algorithm presented here as an example. 

Moore's algorithm 

Let length(u,v) represent the length of the edge from vertex u to vertex v, 
and let this be 00 if u and v are not connected directly. Let distance(v) hold 
the best (shortest) path length from the source vertex s to vertex v, and for 
all v E V - {s} this is set initially to 00. The value of distance(s) is initially 
set to zero. Moore's algorithm operates by expanding outwards from the 
source vertex, along all possible edges, maintaining a queue of all vertices 
connected to parts of the graph which have been reached by the algorithm, 
but which have not yet been expanded. Initially this queue contains only 
the source vertex, and for as long as the queue contains unexamined vertices 
the algorithm continues by removing a vertex u from the head of the queue 
and performing the foUowing sequence of actions. 
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1. For all edges (u, v) E E, if distance(u) + length(u, v) is less than 
d%'stance(v) then set distance(v) = distance(u) + length(u,v), and 
add vertex v to the queue if it is not already present. 

2. repeat step 1 until the queue is empty. 

The parallel version 

To parallelise this algorithm, and modify it for a single destination and an 
unweighted graph (unit length edges), it is modified as folIows. Firstly, 
the calculation of distances to the vertices held in the queue is performed 
in parallel for all queued vertices. Secondly, the algorithm iterates until 
the distance to a specified destination vertex d is finite. Hence, if there 
is no path from s to d this parallel version of Moore's algorithm will not 
terminate. An outline of this algorithm is given below. 

1. Let distance(s) = 0 

2. Vu E V - {s}, let distance(u) = 00 

3. Vu E V - {s}, assign MIN(distance(k)) + 1 to distance(u), Vk E 

ne%'ghbours( u). 

4. Repeat step 3 until distance(d) i= 00 

5. Return distance(d). 

The algorithm defines an additional set of vertices for each vertex u, called 
net'ghbours(u), which contains all vertices v such that (u, v) E E. Let us 
now ex amine where parallelism can be exploited in this algorithm. 

The iterations, defined by steps 3 and 4, cannot be processed concur­
rently since there is a recurrence relationship from one iteration to the next. 
The parallelism is instead found within the Vu of step 3, and here two forms 
of parallelism are possible. Firstly, at the outer-most level of step 3, cal­
culation of the new distance for all vertices from the source can take place 
concurrently. Unfortunately many of these calculations will be redundant, 
simply attempting to assign 00 + 1 to a distance which is already 00, or 
re-calculating a known minimum path length. Secondly, the evaluation of 
the MI N function is an example of a cumulative reduction operation, and 
can therefore be performed with exponentially decreasing parallelism in log­
arithmic time (given suitable hardware of course). 

In CM-Lisp the vertices and edges of G can be represented by the fol­
lowing structure definition. 

(DEFSTRUCT (VERTEX:CM) Label Neighbours) 
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This CM-Lisp expression defines indirectly three functionsj make-vertex, 
Label and Neighbours. The Label and Neighbours functions perform field 
selection on VERTEX objects, and make-vertex is the constructor function 
for vertiees, in mueh the same way that CONS is the constructor function for 
lists. The :CM suffix means that vertices are to be stored in the Connection 
Machine memory and distributed amongst the processing elements, rather 
than being stored in the Host processor. 

Thus, it is possible to write down a CM-Lisp function (due to Hillis), 
which takes three arguments 5, d and G, corresponding to the souree and 
destination vertices and a Xector of vertices (the graph) respeetively. The 
complete function is given below. 

1. (DEFUN path-Iength (s d G) 
2. a(SETF (Label .G) +INF) 
3. (SETF (Label s) 0) 
4.(a) (LOOP UNTIL « (Label d) +INF) 
4.(b) DO a(SETF (Label .(REMOVE s G)) 
4.(c) 1+ (ßMIN a(Label .(Neighbours .G))))) 
5. (Label d)) 

This piece of program requires so me explanation. The second line sets 
the Label fields of all vertices of G to +00, and does so in parallel (assuming 
each CM proeessing element holds a single vertex). The third line sets the 
Label field of the sour ce vertex s to zero. Line 4 defines an iteration con­
struet which repeats until the destination label (Label d) is less than +INF. 
Within this loop, lines 4.(b) and 4.(e) perform the business of ealculating 
intermediate minimum path lengths by setting the labels of all ver ti ces in 
G to be one plus the mimimum of the labels of their neighbouring ver­
tices. Within this expression, (REMOVE s G) is effectively a set-difference 
operation, yielding a Xector of vertiees containing G - {s}. 

The parallelism in this elementary example is clearly evident, and the 
expression of parallelism is explicit. However, the code is remarkably con­
ventional and machine independent. The degree of parallelism is determined 
by the connectivity of the graph, and in the worst case (where G defines a 
chain of vertices) there is no parallelism at aB. The parallelism in this exam­
pIe beeomes significant when the real-world problem that is being modelIed 
produces a large, highly connected graph. Typical examples of such a real­
world problem are finding the shortest route between two buildings in a 
large city, and finding the optimum route for a either a copper track on a 
printed cireuit board or track within a VLSI circuit. 
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5.3 Sununary 

In this chapter we have looked briefly at the topic of software for large 
distributed arrays of processing elements, such as one finds in machines like 
the ICL DAP and the TMC Connection Machine. Within the languages 
that have been designed for such machines we find features which permit 
parallel data objects to be declared explicitly and operated upon in parallel. 
The functions made available to the programmer often reflect the specific 
features of the underlying architecture, for example the data alignment 
operations in DAP Fortran, but there is evidence that more general-purpose 
and flexible languages such as CM-Lisp could be used in conjunction with 
any distributed SIMD machine. 

Generating and understanding parallel programs for SIMD machines is 
often no more difficult than it is for sequential machines, particularly if the 
language and the machine both match the application. Two of the most 
important considerations for producing efficient software for these types of 
architecture are discovering which computational steps can be performed 
in parallel, and distributing the data so that the number of data alignment 
operations is minimised. 
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6 Multiprocessor A rchitecture 

In the first volume we examined the range of techniques which are em­
ployed in high-performance architectures to improve the throughput within 
a single processor. These techniques included pipelining, multiple func­
tion units and a variety of mechanisms designed to meet the necessary 
memory throughput and latency requirements. However, the so-called 'von 
Neumann bottleneck', which is the fundamental limit imposed on sequen­
tial processing by the rate at which information can be moved across the 
boundary between processor and memory, limits both the rate at which 
instructions can be issued and the rate at which operands can be supplied. 

In the first half of this book we saw how data-level parallelism can be 
exploited to some effect by SIMD architectures, through the array-like hard­
ware structures and specialised languages. In these types of architecture a 
single instruction causes a large amount of data to be operated on by a 
common instruction. Also, the predictability of memory reference patterns 
can be used both to maintain a high ftow-rate of operands from memory 
or to arrange for a large number of identical operations to occur simul­
taneously in an array of arithmetic units. Using this model of computation 
the arithmetic throughput on suitable applications can be very high indeed. 

In chapter 10 of volurne I, we saw how the 'Flynn limit' defines an upper 
bound on the speed of instruction issue in SISD and SIMD machines, and 
in many cases the single-instruction stream model can become a serious 
limitation for these classes of architecture. At this point Amdahl's law, 
stating that there is a diminishing return on the investment in parallel 
hardware, itself provides some clue as to how we might progress beyond 
this limitation imposed on us by those parts of an application which are 
not regular, and which cannot be vectorised. 

Recall from section 10.2.3 in volume I, that the performance of a two­
state machine is defined in terms of the relative speeds of the parallel and 
sequential computations and the ratio of parallel to sequential activity in a 
particular application, and that from this the upper bound on speedup can 
be defined as 

s< 1 
- (1- a) + all 

In this equation the proportion of work that can be performed using parallel 
processing, a, is speeded up I times (where I is the ratio of parallel to 
sequential processing rates), whereas the proportion of work which cannot 
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be performed in parallel (using SIMD technique) is not affected by the 
introduction of parallelism. What needs to be done, dearly, is to somehow 
reduce the (1 - a) term in the denominator by some factor p which can be 
increased through the introduction of hardware capable of executing scalar 
instructions in parallel. Hopefully, the speedup might then be determined 
by 

s < ;-p-~ 
p - (1 - a) + al I 

This requires a different model of program execution in which there are a 
multiplicity of instruction streams, and whilst this may not see m to be such 
a radical step to take, the implications for software and hardware design 
are wide ranging and occasionally problematic. 

The most obvious implication arising from the change to an MIMD style 
of architecture is that there must be several active [oei 01 eontrol (involving 
a multiplicity of program counters) within the machine, with duplicated 
instruction issue logic. This seems to be the direction in which existing 
manufacturers of SIMD machines have been moving, for example, with the 
introduction of M-SIMD machines machines such as the CRAY X-MP, the 
CRAY-2, the CRAY-3 and the ETAlO • As we have seen, these machines 
use parallel memory structures to overcome the von Neumann bottleneck, 
and multiple processors to attack the problems of scalar processing and the 
speed-of-light limitation on dock frequency. 

Most computer scientists, and users of MIMD machines, draw a distinc­
tion between multiproeessor and multieomputer systems. If one considers a 
processor as simply a component of a computer system, then the distinc­
tion becomes dearer. A multiprocessor is then a system in which there is 
a simple replication of processors within a framework which does not al­
ter the relationship between the processor(s) and other components (such 
as memory). Conversely, a multicomputer is a system in which the whole 
computer (processor and memory together) are replicated, and some form 
of communication network added, to allow them to exchange information. 

The use of MIMD machines is still in its infancy, and the long-term 
performance potential of multiprocessor and multicomputer systems is still 
unclear. One might reasonably ask whether MIMD architectures are really 
needed, since with hindsight it can be seen that the speed of conventional 
SISD and SIMD machines increases by an approximately ten-fold factor 
every five or so years. This has encouraged some users of computers to con­
jecture that one should simply 'wait a few years' for improved technology 
to provide the required performance. Furthermore, they might argue, by 
the time a new and novel architecture has been developed it may weIl be 
superseded by a faster sequential machine. The problem with this argument 
is that the development of implementation technologies, sequential proces­
sor architectures and MIMD architectures complement each other. Thus, 
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faster sequential processors mean faster processing elements within MIMD 
machines, and higher performance overall. IdeallY' MIMD machines with n 
processors should simply be n-times faster than SISD machines constructed 
from equivalent technology, although as we shall see later this is rarely the 
case. 

An interesting empirical 'law', attributed to Grosch [Gro75], states that 
the performance of a computer is proportional to the square of its cost. In 
other words, if one had twice the purchasing power, it would be possible 
to purehase a machine roughly four times as fast. Alternatively, it is more 
cost-effective to buy a single large computer than a number of smaller, inter­
connected computers. The problem with this counter-argument to MIMD 
architectures is that whilst it is true within a particular dass of ar chi­
tectures, such as main-frames or mini-computers, it is not true between 
different classes of architecture. Consequently, the cost per MIPS (or per 
MFLOPS) in a multi-microprocessor system is significantly less than the 
cost per MIPS in a typical ERDA 1 Cl ass VI supercomputer (such as the 
CRAY-l). For example, the ratio of cost (in thousands of dollars) to perfor­
mance (in MFLOPS) for a CRAY-lS is 105.3, compared with an equivalent 
ratio of just 8.6 for a 128-processor BBN Butterfly machine [JD86]. 

Examining currently available supercomputers, it becomes apparent that 
the majority are pipelined vector processors, of the CRAY-l or CYBER 205 
variety. Furthermore, a large proportion of the applications which require 
very high performance can be processed relatively efficiently on such archi­
tectures, and this begs the question of whether anything other than very 
high performance vector processors is required. The answer to this question 
has already been provided by the manufacturers of vector machines, who 
are now developing and marketing M-SIMD machines such as the CRAY X­
MP and the ETA 10. The problem of scalar processing, mentioned earlier, 
simply cannot be solved by using faster, or longer pipelines. 

In 1971, Minsky and Papert conjectured that the speedup achievable 
by a parallel computer is proportional to the logarithm of the number of 
processors, therefore rendering very-Iarge-scale MIMD processing ineffec­
tive. However, in recent years, the development of practical MIMD systems 
(some of which are described in the following two chapters) has provided 
substantial evidence to disprove this theory. For example, systems contain­
ing several hundred processors have been shown to yield a speedup which 
is almost linearly proportional to the number of processors. 

Perhaps the most serious problem limiting the speedup of MIMD sys­
tems is the existence of inherently sequential segments of code in every 
application. These pieces of sequential code, together with fundamental 

1 A machine satisfying the ERDA Class VI requirement has a floating-point perfor­
mance from 20 to 60 MFLOPS [Rus78]. 
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limitations in machine design, determine a maximum speedup for any ap­
plication. Thankfully, most of the applications which need the power of a 
large MIMD system contain so much potential parallelism, that this con­
straint will only become apparent when very large numbers of processors 
are used. Section 6.2.1 contains a detailed discussion of the performance of 
MIMD systems, and attempts to quantify the effect of certain fundamental 
algorithm and machine limit at ions on their speedup. 

6.1 Design issues 

In order to understand how various MIMD machines operate, and what 
level of performance it is reasonable to expect from them, one must exam­
ine the design-space of MIMD machines a little eloset. For example, the two 
most fundamental design decisions which must be taken very early on in 
the design process are, firstly how powerful each processing element should 
be, and secondly how many processing elements should be supported. For 
a system performance of P, and an ideal architecture containing n pro­
cessors, each with an individual processing capability of p, the hyperbolic 
relationship between n and p (shown in figure 6.1) defines a span of possible 
architectures satisfying P = pn. Therefore, one could use a small number 
of very powerful (and expensive) processors, or a large number of relatively 
slow (and cheap) processors. The use of large numbers of cheap and simple 
processors is made attractive by the development of VLSI. However, this 
technological 'push' may provide the architect of a high performance system 
with large quantities of sm all and powerful processing elements, but does 
not in itself provide a complete solution to the problem of providing high 
performance through massive parallelism. 

From the computer architect's point of view, the central problem posed 
by the requirement for very high processing rates, assuming the availabil­
ity of cheap VLSI computing elements, is how to match the parallelism 
in the computation with the parallelism-potential in the hardware. This 
me ans putting together a highly parallel assemblage of computing elements 
in such a way that the performance of each individual element is made 
available to the application. In turn, the application programmer requires 
new ways of expressing the problem, in order that the available parallel­
ism can be exploited successfully. In the simplest sense, therefore, this is a 
problem of connecting processing elements together and providing a means 
of programming them sensibly. 

This raises a number of fundamental design issues, which the architect 
of a high performance MIMD system must consider. For example, suppose 
a designer is given an unlimited supply of smalI, but powerful computing 
elements, how should they be connected together? Since the number of 
connections that can be made to each element is finite (and probably quite 
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Figure 6.1 Processor performance 1J. number of processors 

small), it is impossible connect every element to every other element. Is 
there then an interconnection strategy which is sufficiently universal that it 
provides adequate connectivity for the majority of applications? 

If it were possible to construct such a system, which languages would 
be appropriate for expressing highly parallel applications, and should the 
identification and expression of parallelism in the application be the respon­
sibility of the programmer? This is an issue which infiuences heavily the 
design of parallel programming languages as weIl as MIMD architectures. 
If we assurne that a highly parallel MIMD architecture and a suitable pro­
gramming language exist, the next question to ask is what algorithms are 
available to exploit the parallelism provided by the machine? Algorithms 
for sequential machines have been studied at great length, and classical 
sorting, searching and numerical algorithms for such machines have been 
documented [Knu73]. The avaiIability of high-performance parallel com­
puters has stimulated much research on the design of parallel algorithms, 
and this is now becoming an increasingly important area of study. 

In the next chapter a number of software issues for multiprocessors are 
discussed, and this includes an overview of some languages and algorithms 
for such architectures. A full treatment ofparallel programming languages 
and algorithms in, however, beyond the scope of this book. The interested 
reader is referred in the first instance to Perrott [Per87] who describes sev­
eral parallel programming languages and the ways in which they may be 
used, and to Quinn [Qui87] who describes numerous algorithms for MIMD 
and SIMD architectures. 

Some would claim that the sequence of design decisions outlined above, 
namely architecture, then language and finally application, is entirely the 
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wrong way to go about designing an MIMD system. The design of ar­
chitectures is always heavily influenced by the needs of the users, by the 
characteristics of the intended applications, and by the languages through 
which they are to be programmed. In short, machines can never be designed 
without a thorough understanding of their intended use. 

An equally important issue, which impinges on the architectural design, 
the languages used, and the applications, is the resulting performance of the 
system as a whole. In this respect, a predictable model of the performance 
of a system is vital, and in section 6.2.1 we consider the performance of a 
generalised MIMD machine in order to illustrate this point. 

6.1.1 Categories of MIMD architecture 

Research into the design of parallel systems has led to the emergence of a 
number of distict categories of MIMD architecture, each with its own ad­
vantages and disadvantages. For example, at the beginning of this chapter, 
the difference between a multicomputer and a multiprocessor was explained, 
and this very coarse distinction effectively defines two broad categories of 
MIMD architecture. 

The relatively simple technique of replicating processors, and providing 
them all with access to a common store, produces shared-memory multipro­
cessors, and the design of machines of this type is considered in chapter 7. 
In common with SIMD array processors (section 2.1.1), the possibilities for 
the placement of the interconnect yield two styles of shared-memory multi­
processorSj those with distributed memory, and those without. Distributed­
memory architectures operate on the principle that data that is local to a 
processor will be placed in the local memory of that processor, thereby re­
ducing the load on the interconnection network. In situations where locality 
is absent, or in which a uniform access cost is prefered, centralised-memory 
architectures can be used. For many applications, not all processors need 
access to all memory locations, and then a partitioning of the memory is 
clearly sensible. 

If the sharing of data is not permitted, processors will need to exchange 
information in so me other way. When exchanging information through a 
shared memory location, the processors involved must become synchronised 
before the transfer can be completed. The writing processor must ensure 
that valid data is not being overwritten, and the reading processor must en­
sure that the location is read after the writing processor has placed a value 
there. This is analogous to passing a message from one processor to another. 
Ensuring that processes are synchronised can be done using standard oper­
ating system techniques, such as semaphores, but an alternative technique 
is to forgo the shared-memory and simply provide dedicated communication 
channels between processors. This leads to the message-passing category of 
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MIMD machines, and these are explained in more detail in chapter 8. 
Shared-memory systems are often thought of as closely-coupled, since 

the interconnection mechanism binds processors together (via the shared 
memory) in what must be a physically compact design. Message-passing 
architectures, however, are often considered to be loosely-coupled systems, 
since processors can tolerate a greater physical separation, and normally 
interact relatively infrequently. 

The shared-memory versus message-passing dichotomy therefore defines 
two classes of machines that are distinquished by the way in which the coop­
eration between processors is implemented. However, both message-passing 
and shared-memory implementation techniques are equally capable of sup­
porting programming models with message-based process communications 
or shared-variables. One must always be aware of the difference between 
the architecture of a machine (the characteristics of the machine as seen by 
the lowest level of software) and its implementation (the logical structures 
used to support the architecture), and this is particularly important in the 
field of multiprocessor systems. 

The performance attainable by each mechanism for processor coopera­
tion depends, as we shall see, on the time-penalty associated with its in­
vocation and the relative frequency with which the language model and 
application requires its use. 

6.1.2 Granularity 

The relative frequency with which processors interact (and hence, synchro­
nise with each other) is another important design issue. The frequency of 
inter action can be quantified as simply the ratio of the amount of com­
putation to the number of communication events. This ratio is known as 
the granularity of the process, with a small ratio corresponding to a fine­
grained process, and a large ratio corresponding to a coarse-grained process. 
Fine-grained processes synchronise with each other relatively frequently, 
whereas coarse-grained processes perform significant amounts of computa­
tion between synchronisation events. The granularity says nothing about 
the amount of code, or the expected lifetime of a process, since the relative 
frequency of communication is not necessarily related to these other factors. 
In order to get a specific measure of granularity one might count the av­
erage number of basic machine instructions each process executes between 
each synchronisation event. Coarse-grained processes could be expected to 
execute several thousand instructions between each synchronisation event, 
whereas fine-grained processes could execute just one. Throughout the re­
mainder of this chapter we denote the granularity by g, and this is then 
equal to the number of useful instructions executed during each grain of 
activity. 
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The architecture of a multiprocessor system, and the performance of 
the communication medium, together determine a minimum level of pro­
cess granularity that can be supported with reasonable efficiency. This 
constraint on the exploitation of parallelism is discussed in greater detail in 
section 6.2.1. 

6.1.3 Load balancing 

Consider a multiprocessor architecture in which a workload consisting of 
m independent parallel processes is distributed between n processors. The 
efficiency of the system depends critically on the work being shared out 
equally between the processors, and this can be illustrated quite simply. If 
all the work is allocated to a single processor, the system will perform no 
better than a single processor. Conversely, if the work is divided exactly 
between the n processors, the performance could be up to n-times that of 
a single processor. 

In fact the problem of load balancing is more complex than this suggests, 
since the workload presented by each process is not necessarily the same, 
and furthermore it is not generally known how much processor time will 
be consumed by a process before it is started. This problem is further 
complicated by the multiprogramming of a single processor, which is likely 
to be responsible for m/n processes. 

This leads to a consideration of several design issues related to load bal­
ancing. First of all, should individual processors divide their time between 
a number of multiprogrammed processes? Secondly, should a process be 
statically bound to one processor, or should it be able to migrate from pro­
cessor to processor depending on the availability of processing resources? 
Thirdly, should the dynamic creation of processes be permitted, or should 
the extent of parallelism be fixed at compile-time? 

There is no single set of correct answers to these questions, since in prac­
tice each MIMD system is optimised for a particular type of computation. 
However, a few basic rules can be defined. For example, a process should 
only mi grate between processors if the performance gained as a result of the 
move is greater than the performance lost due to organisational overheads. 
In a tightly-coupled shared-memory architecture, the context information 
for all processes will be available to all processors, and therefore the cost 
of scheduling a process will be independent of the identity of the proces­
sor on which it is scheduled. However, in a loosely-coupled message-passing 
architecture, there is a high cost associated with moving a process, since the 
entire memory image for the process must be moved physically from one 
processor to another. Hence, in a loosely-coupled system, it is generally 
more difficult at run-time to arrange the load across the system to ensure 
optimal throughput of the system. 
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If processors do not share their time between a number of processes, 
the utilisation of the system is likely to be relatively poor. This is because 
interacting processes occasionally need to synchronise, at which point a 
process must wait for another to catch up. If a processor has no other work 
to perform during this waiting period, it will stand idle. However, when a 
waiting process is eventually freed, there may be a significant delay before 
it regains control of the processor. If the real-time response of the system 
(to external events for example) is critical, then the designer may trade off 
occasional idle periods for a fast response time. 

An issue which affects both the architecture and programming language 
of an MIMD system is whether processes can be created dynamically during 
program execution, or whether the number of parallel processes is deter­
mined statically at compile-time. Static systems have the advantage that a 
compile-time allocation of processes to processors can be performed (pos­
sibly under programmer control), and hence the utilisation of computing 
resources can be optimised. The disadvantage of static systems is that cer­
tain types of parallel algorithm, which create processes on demand, cannot 
be expressed naturally. Furthermore, the actual number of parallel proces­
sors must be known to the programmer, and a change in the number of 
processors will necessitate the re-compilation of programs. Dynamic sys­
tems can be highly flexible, permitting programmers to remain ignorant 
of the available parallelism. However, every machine has finite resources, 
and parallel algorithms which generate very large numbers of processes may 
execute with relatively poor efficiency. This is due to the fact that each pro­
cess requires a certain amount of memory space in order to run efficiently, 
and is especially true in virtual memory systems, where the working-set 
model applies [Den68J. This results in there being an optimum level of mul­
tiprogramming, above which performance falls away due to virtual store 
interrupts, and below which performance falls away due to unused proces­
sor time. 

6.2 Performance issues 

There are many ways to measure the performance of a system. For example, 
the metric of performance commonly assumed is speed, but reliability, cost, 
and programmability are just as important. For the architect of MIMD 
systems, however, speed is usually the primary concern. One of the ma­
jor problems in discussing performance, and comparing the performance of 
different MIMD systems, is that it is extremely difficult to compare quanti­
tively two systems with radically different structures. There are simply too 
many variable factors involved in the equations of performance for scien­
tific deductions to be made. Consequently, architects develop models which 
characterise performance in terms of the most important parameters of a 
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system. These models are necessarily crude, but often yield useful and un­
expected results. In this section we present a general model of an MI MD 
system, and characterise this system in terms of the most important features 
of the architecture and the algorithm being executed. 

Characterising the Application 

There are essentially just two ways in which the transition to multiple in­
struction stream processing can improve performance: either by providing 
a number of independent users with a superior time-sharing service, or by 
providing one or more users with a parallel programming environment in 
which process-parallelism is translated into application speedup through 
the cooperation of a number of processors on a single task. To provide the 
first category of service is relatively easy, since without interaction between 
processors, very low inter-processor communication bandwidths can be tol­
erated. This is the philosophy behind distributed workstation networks, 
and it can work very weIl. To provide the second category of service re­
quires both a logical and a physical mechanism for permitting a number 
of distinct processes to exchange information du ring the course of their co­
operative effort. It is hence the provision of a communication mechanism 
(whether through shared-memory or via message-passing) which is central 
to the design and performance of MIMD systems. A corollary to this is that 
the performance of an MIMD system depends not only on the efficiency of 
the cooperation mechanism, but also on the relative frequency with which 
cooperating processes interact. 

The pattern of behaviour of a number of processes can be characterised 
crudely, in terms of the amount of time each process spends computing in 
relation to the amount of time it spends communicating. This corresponds 
to our dimensionless ratio granularity, and this is therefore one of the most 
important parameters of a parallel algorithm. 

Now, regardless of the programming language used in an MIMD sys­
tem, the computation at the physical level consists of a number of parallel 
grains of activity. If we assurne for a moment that the finest possible level 
of granularity is used, then the computation consists solely of atomic opera­
tions whose inputs operands are the output results of preceding operations. 
Such a sequence of dependent operations is illustrated in figure 6.2. Since it 
takes a finite amount of time to process these atomic operations there will 
be, at any instant, a certain number of atomic operations which have their 
input values available. In theory, all such operations could be processed 
in parallel, if there were enough processors. If all atomic operations take 
an identical time to compute (this is a slight simplification), then the com­
putation can be divided into a sequence of stages. Within each stage, all 
atomic operations can be evaluated in parallel, and every atomic operation 
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at stage i requires at least one operand that is computed at stage i - 1. 
Therefore, if there are 1I"i atomic operations at stage i, then we say that 1I"i 

is the instantaneous parallelism at stage i. 
The variation of 1I"i over all stages in a computation can be plotted graph­

ically for any potentially parallel algorithm. The resulting parallelism profile 
illustrates very clearly the parallel behaviour of a particular algorithm. A 
sampie profile is shown in figure 6.3, and by inspection it is obvious that 
the area und er the profile is equal to the total number of atomic operations 
performed, and that the horizontal distance over which the profile extends 
equals the absolute minimum number of computational steps. In figure 6.3 
a vertical slice has been taken out of the profile, and this represents the in­
stantaneous parallelism, 11" i, at stage i. The vertical slices are time-ordered 
in their execution such that 

Vi,j (1I"i executes before 11"; -t i < j) 

When we consider algorithms in which granularity is not minimal, the 
parallelism at stage i is generally reduced. However, this is not always the 
case. A totally sequential algorithm may have 1I"i = 1 for all i, and then 
1I"i is always the same, irrespective of granularity. For most multiprocessor 
systems it is too time-consuming to treat each instruction as an individual 
process. Instructions are therefore composed into sequences, with commu­
nication events defining the start and end of each grain. 

Some novel architectures do attempt to treat each instruction as an in­
dividual process. Since the program counter fcr each prccess can then take 
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Figure 6.9 Maximal-parallelism profile 

on only one value it is totally redundant and then the issuing of each in­
struction is determined solely by the availability of its input operands. Such 
architectures are known as dataflow architectures. A significant amount of 
research has been done in the area of dataflow architectures, but to date 
their early promise has failed to be realised commercially. A treatment of 
dataflow architectures is beyond the scope of this book, but interested read­
ers should consult Hwang and Briggs[HB84], or the February 1982 issue of 
the IEEE Computer journal. 

When granularity is not minimal, each stage in the computation consists 
of more than one atomic operation. The atomic operations within a single 
grain are assumed to be executed sequentially, and may therefore have se­
quential dependencies between them without adversely affecting the time 
taken to execute the grain. Note, if all atomic operations within a grain of 
activity are dependent on results computed in preceding grains, then mov­
ing to a finer level of granularity will not raise the parallelism profile. In 
effect, the inherent sequentiality of the algorithm enforces an upper bound 
on the instantaneous parallelism that can be extracted. Hence, any algo­
rithm can be characterised in terms of its maximal-parallelism profile and 
its granularity, and both of these are measures wh ich are independent of 
the architecture on which an algorithm runs. Granularity, when not equal 
to unity, would normally be expected to vary considerably from grain to 
grain. However, for the purposes of this simple analytical model we assurne 
it is constant. 
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Characterising the architecture 

In order to complete the specification of a parallel processing system, the 
parameters of the architecture which define the performance of the system 
need to be determined. In the same way that certain general assumptions 
are made about the application in order to simplify the application model, 
the overall model of an architecture also relies on a few basic assumptions. 

The first assumption is that each processor has an internal dock, with a 
period of t c seconds, and that each instruction executes in one dock period. 
In a practical architecture instructions often have variable execution times, 
and so t c may be looked upon as the average instruction execution time. 
The second assumption is that the system contains n processing elements, 
and is both homogeneous and orthogonal. This means that all process­
ing elements are identical, and have equal access to whatever mechanism is 
used to connect the processors. The third assumption concerns the unavoid­
able cost of communicating values between concurrent processes, particu­
larly when they reside within distinct processors. Consider the sequence of 
events which occurs when a process initiates a communication event. This 
event may be the synchronised access of a shared variable, or it may be the 
sending of a message from one processor to another. In a dataflow machine 
communication occurs at the completion of every instruction, and typically 
consists of moving a result packet from an execution unit to a matching 
store. In addition, the input of data in a dataflow architecture is implicit, 
since all 'instructions' which are not in astate of execution are normally 
waiting for input. Therefore, whatever the model of execution, the time 
taken to communicate can be modelIed in terms of the time taken to decide 
whether the current process must wait, plus the time taken to de-schedule 
the current process if indeed it needed to wait. We therefore define D to be 
the decision time, and X to be the context-switching time. 

In practice, the time taken to decide whether the communication event 
can proceed immediately will depend on the mechanism for access to shared 
variables, or on the method for examining the status of a communication 
channel. The context-switching time will depend on the amount of context 
information to be preserved during a process-change, and on the speed 
with which this can be achieved. However, suppose for a moment that 
each processor is capable of performing both of these tasks in zero time, 
the results it produces are still required by another processor. The laws 
of physics state that the transfer of information takes a finite time, and 
therefore each machine must have a characteristic latency associated with 
the movement of information from one processor to another. In practice 
the latency, denoted here by L, will be determined by the interconnection 
architecture. The latency can be expressed as a multiple of the instruction 
cycle time t c , and hence we introduce the latency factor I = Lltc . 
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Consider, therefore, what happens during the execution of a single grain 
of activity. If we assume that a grain of activity is scheduled as a result of 
the previously scheduled process becoming suspended, then the processor 
must exchange process contexts before the scheduled grain can begin. As we 
have mentioned already, this takes a time of X seconds or x = X/tc atomic 
time intervals. This change of variable simply converts X into multiples of 
the instruction execution time. Following the context switch, 9 instructions 
are executed, and these take a time of 9 te• Finally, the grain terminates 
when the current process decides that it must synchronise with another 
process, and this incurs a time D. Again, we would prefer to measure the 
decision time D relative to t e , and so we introduce the decision time factor 
d = D/te• Therefore, the total time required to process a grain of activity 
is t g 

tg = te (g + x + d) (6.1) 

Clearly different machines will have different values for x and d, and 
these can be used to further classify multiprocessor systems. For example, 
there are some multiprocessor architectures which are able to overlap the 
time to access adecision variable with other useful processing. Further­
more, some machines are able to change context instantaneously, effectively 
multiplexing their time between different processes at the hardware level. 
Hence, using d and x, it is possible to define some simple and yet useful 
classes of architecture. 

The class of latency tolerant (LT) architectures is the class of all ar chi­
tectures for which d = O. Those architectures for which d i- 0 are termed 
latency sensitive (L8). The class of state multiplexed (8M) architectures is 
the dass of all architectures for which x = O. Conversely those architectures 
for which xi- 0 are termed static state (88) architectures. 

Within the dass of L8 architectures, the decision time is normally an 
increasing function of n (the number of processors in the system), and such 
architectures can be further classified according to the order of this function. 
For example, in binary k-cube architectures d = O(Iog n) whereas in 2-D 
mesh architectures d = O(n1/ 2). 

To summarise this architectural model, we have a system in which there 
are n processors and an intrinsic machine latency factor I. Each processor 
takes a time d t e to effect a proceed/wait decision based on some shared state 
information, and takes a time x te to exchange the context of a suspended 
process for the context of a runnable process. 

6.2.1 Speed-up and efficiency 

In the design of multiprocessor systems we are concerned primarily with 
the performance that can be gained through the use of parallelism. It is 
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therefore instructive to develop a theory for the expected speedup from 
the model described above. First let us consider the processing efficiency 
in our model. Since we define efficiency as the amount of useful comput­
ing performed in unit time, such overheads as context switching (x) and 
decision-making latency (d) can have an adverse affect. 

The true effect of x and d on performance depends critically on the 
granularity of processing, g, and to model the degradation in performance 
due to multiprocessing overheads we define the granular effieieney 1}g to be 

g t c g 1 
1} --- -

9 - tg - g + x + d - 1 + ( ~) (6.2) 

Note the similarity to the equation for veetor effieieney (equation 10.3) 
presented in chapter 10 of volume I, which exhibits the same form. Here 
granularity is analogous to vector length and x + dis analogous to nl/2' We 
can therefore correctly surmise that a granular efficiency of 0.5 results from 
a granularity of x + d. 

Furthermore, it is clear that architectures which are both latency toler­
ant and state multiplexed must have a fixed granular efficiency of 1.0, such 
architectures are therefore 100% efficient. 

Let us now consider the parallelism profile of figure 6.3, and how the ar­
bitrary level of parallelism, at each stage during execution of the application 
algorithm, could be scheduled on a fixed number of processors. At stage i 
in our model of computation there are 11"; parallel processes2 and these are 
to be evaluated by at most n processors. We will assurne that each process 
can be scheduled on any processor with equal ease. In cases where this is 
not so, some reduction in performance may result due to imbalances in the 
loading across the system. 

In order to describe the behaviour of the whole system over time, we 
use a simple graphical notation known variously as a spaee-time dia gram, 
or Gantt ehart. These diagrams indicate what the machine resources of 
interest (in our case processors) are doing at a particular instant in time, 
and hence map out the utilisation of machine resources over time. The 
space-time graph for the model system is shown in figure 6.4, and this plots 
space vertically with time proceeding from left to right. Here it can be 
seen that the degree of concurrency has been restricted by the available 
hardware (since in many cases 11"; will be greater than n). This is achieved 
by scheduling the parallel processes sequentially, in groups of n, during 
each stage of the computation. Since all processes within each stage are 

2The term proce88 is used to denote any activity which can occur in parallel with 
activities of the same (or other) type. It therefore encompasses coarse-grained processes 
in the Operating System sense, as well as fine-grained dataflow processes. 
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Figure 6.4 Space-time diagram for an n-processor system 

independent, the actual order in which they are evaluated does not alter 
the result of the computation3 . 

The dotted area in figure 6.4 represents the processor time used during 
the execution of a single grain of activity, and the areas shaded with oblique 
lines represent the processor time spent switching context and accessing 
non-Iocal status information in order to synchronise with other processes. 
Figure 6.4 shows a snap-shot of the activity from the beginning of stage i 
to the beginning of stage i + 1, under the assumption that the average level 
of granularity throughout stage i is gi {gi ~ I} and that the parallelism at 
stage i is '1I'i. Therefore, the average nurnber of process grains that rnust be 
allocated to each processor in stage i is '1I'i/n, and the number of time-slices 
in stage " must be r '1I'i/n 1. Hence, the time within stage i during which 
processors are busy, in an n-processor system, will be 

(6.3) 

If we consider the worst-case and best-case analysis of the total time, for 
stage i on n processors, then we will get a lower bound and an upper bound 
on speedup (and processor utilisation) for n processors. 

3The outcome may be different for different schedules if the computation as a wh oIe 
is not determinate. 
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Worst-case analysis of speedup 

The reason why grains of activity are processed in stage i + 1, rather than 
stage '., is that they need at least one value wh ich is computed at stage i. 
The grains of activity in stage i + 1 cannot be evaluated until the values 
they require have not only been computed, but also transmitted (perhaps 
through an inter-processor communication network) to the receiving pro­
cessor. In the warst case, the first grain of activity for every processor at 
stage i + 1 requires a value computed during the last time-slice of stage i. 
The worst-case critical path for the jlow-dependence between stages i and 
i + 1 therefore extends across the intervallabelled fw in figure 6.4. Hence, 
stage i + 1 cannot begin until a time ,tc seconds after the completion of 
stage i, where , is defined as 

,= max(d,/) 

Therefore , represents the minimum separation of two successive stages in 
the computation. In a latency sensitive architecture , will be equal to d, the 
decision time factor, since in deciding that one process must suspend due 
to a flow-dependence with stage i + 1 enough information is exchanged to 
enable the first grain in stage i + 1 to begin execution. In a latency tolerant 
architecture (d = 0) the latency of information transfer at the end of stage i 
cannot be overlapped with any useful processing, and so , must be equal to 
/. Therefore, the total machine time (active and inactive), consumed during 
the execution of stage i on n processors, is given by Tr 

Tt :::: Aftg + ("{ - d)tc 

However, r 7r;jn 1 can be simplified, since it is a fact that for any x and y, 

f;l x 
{o:::: € < I} (6.4) = -+€ 

Y 
Hence, 

Tt< (~ + 1) tg + ("{ - d)tc (6.5) 

This can be compared with the time required to process stage i, without 
modification to the granular structure of the application, on a single proces­
sor in order to discover the speedup resulting from the use of n processors. 
The time on a single processor is denoted Tl and is given by 

(6.6) 

Therefore, combining equations 6.5 and 6.6, the lower bound on speedup at 
an arbitrary stage in the computation, S(n), can be defined as 

S(n) der Tl > n7r(g + x + d) 
Tn - (n + 7r) (g + x + d) + n("{ - d) 
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At this point it is useful to define A, such that 

grain time 
A= .. . 

mInImUm stage tlme g + x + j 
g+x+d (6.7) 

Hence, the equation for S(n) can be rearranged, thus 

S(n) ~ n [1: AnJ (6.8) 

This analysis produces a lower bound wh ich is independent of the dock 
speed of the machine and dependent only on the number of processors, the 
amount of parallelism in the application, the granularity of processing, the 
cost of processor communications and an inherent machine latency factor. 

Best-case analysis of speedup 

Consider now the best case arrangement of activity within stages i and 
i + 1, where the values required during the first time-slice within stage 
i + 1 (on all processors) are prod uced d uring the very first time-slice of 
stage i. Under this condition one might reasonably expect the latency 
of transmitting these values to be overlapped with the processing of the 
remaining grains of activity in stage i. The best-case critical path for the 
flow-dependence between stages i and i + 1 therefore extends across the 
time interval fb, again illustrated in figure 6.4. 

An analysis of the time required to compute stage z·, in an n-processor 
system, requires us to consider two cases. The first case to consider occurs 
when all transmission latency can be overlapped by parallel activity within 
stage i, whereas the second case occurs when there is some latency which 
cannot be overlapped within stage i. 

The case where all latency is overlapped with other processing can be 
written as 

Case 1 
der Ai - (gi + x)tc > jtc (6.9) 

From equations 6.3 and 6.4, we know that 

Ai=(~+f)tg {O::::;f<I} 

Clearly in the best case we must set f = 0, since this leads to the lowest 
possible execution time on n processors and hence the greatest speedup. 
Therefore, let 

n 1I"i ( ) Ai = -;;tg 6.10 

The condition under wh ich case 1 holds can be derived from equations 6.9 
and 6.10, resulting in 

Case1 
der 11". 

-2. (gi + X + d) > (gi + X + j) 
n 
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which can be rearranged, and applied to an arbitrary stage of the compu­
tation, to define Condition 1 thus 

Condition 1 
der ( 9 + x + d) n < 11" or n< >'11" 

9+ X +')' 
(6.11) 

Since we know that under Case 1 all flow-dependence latency from stage i 
to stage i + 1 can be overlapped with other processing in stage i, the time 
for Tt will be simply 

and hence, using equation 6.10 

Since we know what the time for stage i on one processor is, from equa­
tion 6.6, we can write down an equation for the best-case speedup (at any 
stage of the computation) under Condition 1, and this turns out to be 
exactly n, thus 

S(n) der Tl < - n 
T.n -• 

(6.12) 

Under the second case to be considered, not all of the latency involved 
in the transfer of information from stage i to stage i + 1 can be overlapped 
with other activity in stage i, and therefore the second case can be defined 
as 

Case2 
der 

(6.13) 

Again, using equation 6.10, we can rearrange equation 6.13 and apply it to 
any stage of the computation. This defines Condition 2 as 

n>1I"(9+ X +d) 
9+x+i 

Condition2 
der 

(6.14) 

It can be seen from figure 6.4 that the time between the start of stage i and 
the start of stage i + 1, und er Condition 2, is determined by the inherent 
machine latency and the time for the first time-slice. Therefore 

Again we know the time to process stage i on a single processor, from equa­
tion 6.6, and hence we can express the best-case speedup under Condition 2 
(at an arbitrary stage in the computation) as 

S(n) der Tl (9+ X +d ) - < 11" or S(n) ::; >'11" 
Tn - g+ x+ ')' (6.15) 
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Figure 6.5 Upper and lower bounds on speedup in a multiprocessor 

The upper and lower bounds on speedup can be plot ted graphically to 
indicate the rate of growth in performance in relation to the number of pro­
cessors engaged in processing the parallel activities. Figure 6.5 illustrates 
these bounds, with the shaded area defining the operating region of the 
combined algorithm and architecture. It is not possible for any parallel sys­
tem to operate above the shaded region, and this is as one might reasonably 
expect. The upper-bound on speedup states that linear speedup is the best 
that is achievable, and again this appears reasonable. A poor algorithm 
(low value for 11') or a bad architecture (high value for I and/or high value 
for d) will move both the upper and lower bounds downwards. 

It is worth noting that the asymptotic upper-bound on speedup (equa­
tion 6.15) is equal to the value of n (the number of processors) at which 
the latency just begins to dominate the computation time. This value of 
n therefore has a special significance, and defines an inftexion point in the 
speedup curves. The inflexion point is denoted by n, and is defined by 

n=A1I' (6.16) 

The upper and lower bounds on speedup can now be combined to give a 
general equation for speedup, thus 

n[l~~] <s(n)~{ ~ for n ~ n 
for n > n (6.17) 
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Another interesting point to note is that the maximum difference be­
tween the upper and lower bounds actually occurs at the infiexion point 
(n = n). This can be seen quite clearly, since for n < n the difference 
between the upper-bound and the lower-bound increases with n, whereas 
for n > n the difference decreases with n. As n -? 00 the upper and lower 
bounds both approach the asymptotic maximum speedup of S(oo) = n. 
Furthermore, if we substitute n = n into the lower-bound equation (equa­
tion 6.8) we find that the lower-bound on speedup at the infiexion point is 
exactly n/2. This me ans therefore, that for a given set of parameters the 
actual speedup can never be worse than half the maximum speedup. 

The variations in speedup, between the upper and lower bounds, are 
caused by random scheduling of parallel activities. If it were possible to 
optimise the scheduling of operations, so that the latency associated with 
actual dependencies between successive stages in the computation could be 
overlapped as much as possible with normal processing, then the machine 
would operate as elose to the upper-bound as the dependencies permitted. 
It is unlikely that such scheduling could be performed during program exe­
cution, since the scheduling would almost certainly take longer to perform 
than the computation itself. However, there may weIl be certain static op­
timisations that can be performed at compile-time, although in practice a 
factor of two improvement is not a significant goal. 

Naturally, the sales literature for commercial parallel mach in es normally 
contains speedup curves showing the first (almost linear) section of the S (n) 
curve, and the applications are likely to have been conveniently chosen so 
that n is much greater than the actual number of processors provided. 
Clearly, with realistic figures for I, d and x, machine users could construct 
their own speedup curves, and then of course the results might be somewhat 
different. 

If the speedup for latency-sensitive static state architectures is examined 
more closely it can be observed that since d =j:. 0, "( will be equal to d (since 
d can not be less than I). This pro duces a value for .x of exactly 1, and a 
simplified speedup relationship of 

[ 1 ] { n for n < 11" 
n 1 +; < S (n) ~ 11" for n ~ 11" (6.18) 

In this relationship the level of granularity appears to be immaterial, 
and indeed this is the case. Surely, however, something is missing in this 
equation, since the realistic performance of machines with a large context 
switching time on fine-grained applications must be low. The truth of the 
matter is that S(n) measures only the relative variations in performance 
as n is changed and does not take into account the processing overheads 
associated with multiprocessing each processor. To complete the model, 
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we define CII to be the parallel processing gain, and this is essentially the 
net speedup of a parallel system compared with an equivalent sequential 
system. This is equal to the granular efficiency multiplied by the speedup, 
hence 

(6.19) 

Using this measure of gain we can compare particular instances of parallel 
systems, as opposed to simply comparing the rates at which performance 
increases with the size of the system. 

6.2.2 Extensibility 

The high performance potential of multiprocessor systems derives directly 
from the replication of processing elements within those systems, and the 
concurrent operation of those processors on one or more tasks involving 
one or more processes. A fundamental consideration for the designer of 
multiprocessor systems is therefore the effect on the system of altering the 
degree of replication, usually upward. 

There are several aspects of the design which must be considered. Firstly, 
as the number of processing elements in increased the total cost of the sys­
tem must also increase. It is obviously desirable to minimise this increase in 
cost, and if the degree of replication is to be very large then a careful anal­
ysis of the rate of growth in hardware complexity (and hence cost) must be 
performed. For example, we know that the cost (measured as a gate-count) 
of a cross-bar switch grows in proportion to n2 (for an n x n switch). There­
fore, any multiprocessor which uses such a switch to connect the component 
processors will be limited in the degree to which they can be replicated by 
the cost of the interconnecting switch. We can therefore say that a cross-bar 
switch is not extensible, since an n 2 cost function yields diminishing returns 
on the investment in hardware. We might choose to alleviate this problem 
by connecting the processors together in the form of a ring. The rate of 
growth in hardware complexity for such a ring is elearly proportional to 
n (with a sm all constant of proportionality). However, whilst the cost of 
a ring structure is more than acceptable, the average processor-processor 
latency is proportional to the circumference of the ring, n. Therefore the 
latency factor, I, for a ring-structured multiprocessor will be proportional 
to n (unless all processors only communicate with processors which are a 
constant distance away). Since a low value for I is a desirable attribute for 
a multiprocessor system, having a value for I which is linearly related to n 
is counter-productive. 

It is elear that one must consider two independent aspects of design when 
assessing the extensibility of a particular multiprocessor machine. Firstly, 
how elose to linear is the growth in hardware cost? And secondly, how do 
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the basic machine parameters, such as 1, vary as the processing elements 
are replicated? 

A further important consideration, particularly for very large-scale mul­
tiprocessors, is the space occupied by the system as a whole and more par­
ticularly by the inter-processor wiring. For example, consider n processors 
densely packed in a 3-dimensional volume. If each processor occupies a 
constant volume c, then the space occupied by the whole system must be 
at least nc. If the system is contained in a regular cube, then each side will 
have length wh ich is at most O(n1/ 3 ). 

Assume these processors are connected in the form of a binary k-cube 
(k = log2 n), where a k-cube is defined recursively as two (k -1 )-cubes, with 
corresponding processors in each sub-cube having a direct connection (see 
section 3.3.1). It should be possible to partition the volume containing the k­
cube into two equal-sized volumes containing n/2 processors. To satisfy the 
interconnection requirements of the binary k-cube topology these two sub­
volumes must have O(n) wires passing between them. However, the plane 
which bisects the n-processor system into two (k - l)-cubes has an area 
which is at most O(n2/ 3 ), and it is therefore clear that O(n) wires cannot 
pass through such a bisection. As a result, either the total volume occupied 
by the k-cube must be a super-linear function of n, or the communication 
bandwidth across each dimension of a binary k-cube must decrease as k 
increases. In order to reduce the communication bandwidth some wires 
crossing the dimension boundaries must be shared between a number of 
processors on either side of the division, and this requires multiplexing logic. 
In practice architectures with large binary k-cube routing networks have 
yet to suffer significantly from this problem, although in machines such as 
the Connection Machine [HiI85] and the NCUBE/10 [JRW86] (where each 
circuit board accommodates a relatively large sub-cube) pin-boundedness 
is certainly in evidence. The ability to extend a particular multiprocessor 
architecture is clearly only important within a given range, since commercial 
systems have a finite lifetime and the buyers of these systems have finite 
budgets. However, in the Ion ger term, as configurations become larger, the 
effects of scaling will become more inportant and architectures which exhibit 
super-linear growth in volume will become less attractive. The extensibility 
of multiprocessor architectures is still a subject which is of much research 
interest, and the interested reader will find further information in Lipovski 
and Malek [LM87]. 

6.2.3 Reliability and fault-tolerance 

The reliability of high performance computer systems is often considered 
to be an issue which is secondary to the most important task of design­
ing for maximum throughput. However, the operating efficiency of a high 
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performance system is the product of its throughput and its availability, 
and the availability of a machine depends on both the mean time between 
failures (MTBF) and the average down time (ADT). This is nowhere more 
important than in multiprocessor architectures since, as we shall see, the 
MTBF of very highly parallel MIMD systems can be extremely poor. 

It is a commonly held belief that multiprocessor architectures are in­
herently tolerant of faults since the replication of processing elements leads 
to the natural availability of spares which can be switched in when the oc­
casional processor fails. Designing machines which are fault-tolerant (and 
hence reliable) involves a great deal more than simply providing spares, 
however. For example, each fault must be located before any hardware 
reconfiguration can be performed, and when the fault has been rectified 
the state of the computation prior to the occurrence of the fault must be 
reinstated if fault processing is to be transparent. 

Consider a hypothetical multiprocessor system containing 1000 process­
ing elements, each consisting of just 100 components. If it is assumed that 
the failure rate for each component is 10-7 failures per hour (>' = 10-7) 

then the MTBF for each component is 1/>' = 10 million hours. The MTBF 
for the wh oIe system can be calculated as the MTBF for each component 
divided by the number of components. Therefore, since there are 1000 X 100 
components, the MTBF for the multiprocessor system will be just 100 hours, 
or approximately 4 days. This calculation includes only failures caused by 
faulty components. In addition there are transient faults caused by envi­
ronmental factors such as changes in ambient temperature, or even cosmic 
radiation, and intermittent faults caused by poor production quality, and 
these normally occur more often than component faults. In addition to the 
problems of hardware reliability there are further problems associated with 
software reliability, and these are compounded in multiprocessor systems by 
the added software complexity of process synchronisation and communica­
tion. Diagnosing software faults in a multi-process environment can be a 
particularly difficult task. 

Improvements in technology could, in the future, reduce the failure rate 
per gate within multiprocessor systems through the use of higher levels of 
integration. However, higher levels of integration will also result in systems 
with larger numbers of processors, and hence the problem of reliability will 
remain. Since faults cannot be avoided, and prolonged unavailability of high 
performance systems is unacceptable, the only alternative is to design high 
performance multiprocessors for maximum resilience and fault-tolerance. 

Designing for maximum resilience means discovering wh ich components 
are least reliable, and either minimising their use or making them more 
reliable. Designing for fault-tolerance means two things: firstly, designing 
systems with the ability to detect the occurrence of an error, and secondly 
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imbuing those systems with the ability to correct and recover from an error. 
There are many ways in which the detection and recovery from faults can 
be implemented, for example one well-known method involves replicating 
sensitive components (usually thrice) and accepting the behaviour exhibited 
by the majority (this is known as triple-modular-redundancy, or TMR). 
This level of redundancy can be very costly, and of course the logic which 
compares the behaviour of the replicated modules mayaIso be faulty. 

The techniques that are applied to uni-processor architectures to detect 
faults, such as error-detecting codes (SECDED and parity checks), can be 
applied within each processing element of a multiprocessor system. How­
ever, in a multiprocessor system there is a further problem caused by the 
reliability of the network logic which connects processors to memories, or 
processor-memory pairs with each other. It is weIl known that the most 
unreliable elements in a computer system are the electrical connections be­
tween physicaIly distinct component parts, and this is particularly true of 
intermittent faults. Hence, in a large multiprocessor system it is reasonable 
to expect interruptions in the interconnection network, since these normally 
contain large numbers of wires and connectors. Therefore the protocol for 
data-movement through the network should be robust, and capable of de­
tecting and correcting transient errors. More permanent errars in the net­
work logic will result in one or more paths becoming unusable. This may 
in turn reduce the connectivity of the network, and result in one or more 
processors being unable to communicate with the rest of the system. This 
can be overcome by designing networks with multiple paths between every 
pair of connectable components, so that if one path becomes inoperable 
another can be used. 

Large high performance computers are sometimes designed with a par­
ticularly time-consuming application in mind. For example, the IBM GFll 
project4 [BDW85] was designed primarily for the solution of numerical 
problems in quantum chromodynamics. A calculation of particular interest 
has been estimated to take approximately one year on the GFll machine, 
and under these circumstances reliability is a very important consideration. 
Since it is highly unlikely that a year-Iong computation could ever proceed 
to completion without encountering a system failure, such lengthy calcula­
tions must be partitioned into a sequence of computational segments which 
each occupy a time-span somewhat shorter than the system MTBF. At the 
end of each segment the state of the computation must be saved, allowing 
the computation to be rolled back to a previously known correct position 
and re-started in the event of failure. This ensures that the amount of 
time wasted as a result of each system failure is limited to the time for one 

4The component count for the GFll machine ia approximately 4 X laS, 1296 of which 
are located in the network. 
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segment of the computation. 

6.3 Summary 

In conclusion, we have seen that in order to achieve significantly greater 
performance than has been possible with uni-processor machines the next 
generation of high performance computers must use multiprocessor or mul­
ticomputer architectures, and these are likely to incorporate large numbers 
of processing elements. The design issues which are important for these 
types of system have been discussed, and the expected performance has 
been modelled. This model emphasises the difference between granular effi­
ciency and speedupj granular efficiency defines the slow-down which occurs 
when a single processor emulates a number of virtual processors, whereas 
speedup is simply the ratio of execution times for the same algorithm on 
one processor compared with n processors. This can never be greater than 
unity. Measured execution times, however, can sometimes yield parallel 
processing gains which are greater than n. This apparent 'super-linear' 
speedup is caused by side-effects, such as reduced working-set sizes, or the 
improper comparison of a sequential pro gram and its parallelised version. 

We have also seen why the reliability of multiprocessor architectures 
cannot be ignored, and briefly mentioned the issues to be considered when 
designing fault-tolerant multiprocessor systems. 

The following two chapters discuss the two major categories of mul­
tiprocessor architecturej those which use shared-memory to enable their 
processors to interact, and those in which processors communicate through 
message-passing. 
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Architectures which incorporate a number of tightly-coupled processors of­
ten seem a natural choice for the computer designer in search of very high 
performance. For some applications SIMD vector or array processors are 
just not suitable, and a number 'of distinct instruction streams are required. 
However, multiprocessor architectures all face the fundamental problem of 
data sharing and process synchronisation, problems which can be illustrated 
by an analogy drawn from the experience of human organisation. 

For a group of people to cooperate closely on a complex task, the task 
must be partitioned into a number of simpler sub-tasks that are of roughly 
equivalent complexity. During the course of their work the cooperating par­
ties may need to exchange information in order to coordinate their activities. 
In some instances the results of one person's endeavours might have to be 
made available at all times to everybody else who is involved. Consider, for 
example, a man calculating prices in a financial marketj these prices must 
be displayed and continuously updated throughout the course of a day's 
trading. In a similar way, cooperating processors in a multiprocessor sys­
tem share the computational workload and occasionally communicate with 
each other. If a number of processors require access to the same piece of 
information then each must have Read and Write access to a shared area 
of physical memory. In this chapter we look at how this can be achieved, 
what problems arise and, for three important categories of shared-memory 
multiprocessor, we describe example machines in detail. 

7.1 Shared-memory architecture 

Probably the most attractive feature of shared-memory multiprocessors, 
seen particularly from within the existing programming community, is the 
flexibility and relative ease with which many different programming styles 
can be accommodated. This sterns from the availability of a 'global state' 
which, together with elementary process synchronisation primitives, permits 
a full range of parallel programming paradigms to be supported. All shared­
memory multiprocessor systems, although implemented in many different 
ways, are logically equivalent to one of the two abstract models illustrated 
in figure 7.1. These differ only in repect of their implementationj in case (a) 
the cost of accessing each memory location in the machine is the same, from 
wherever the re quest emanates, and in case (b) access to non-IDeal memory 
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Figure 7.1 Basic shared-memory architectures 

incurs an additional time penalty for all processors. The programmer's 
model of this abstract machine is extremely simple, and in most cases the 
programmer is unaware of any physical distribution of memory. This type 
of multiprocessor architecture is therefore particularly flexible, lending itself 
weIl to the porting of parallel algorithms between different shared-memory 
architectures. 

The options open to the implementor of a shared-memory multiprocessor 
revolve around the mechanism for providing a path between each processor 
and each memory Iocation, and the mechanism for ensuring temporary ex­
clusive access to regions of memory when critical data-structures are being 
processed. Secondary issues include the balancing of computationalload be­
tween the processors, deciding on whether each processor should timeshare 
its activity between more than one process, and the allocation and mapping 
of the global address space. These secondary issues present themselves in 
the design of any MIMD architecture, and were discussed in chapter 6. 

Shared-memory multiprocessor systems can be classified in many ways. 
For example, it is possible to classify them according to whether they have 
strictly public memory or some public memory and some private memory, 
or on the basis of the language model used. However, since the performance 
of a shared-memory multiprocessor is so closely linked to the architecture 
of the processor-memory interconnect, this will be the basis of the broad 
classification used in this chapter. The range of possible interconnection 
methods pro duces a spectrum of generic shared-memory multiprocessor ar­
chitectures, varying in cost, connectivityand maximum size. At the low-cost 
end of the spectrum we find multiprocessor systems constructed with lit-
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Figure 7.~ Shared-memory architecture using a common bus 

tle or no parallelism in the interconnect. In such a system the memory 
requests of all processors must be serviced sequentially, and this places an 
upper bound on the number of processors that can be supported by this 
type of interconnect. At the highly-connected end of the spectrum there 
we find multiprocessor systems with interconnection mechanisms capable 
of servicing all memory requests in parallel (assuming distinct addresses). 
Unfortunately, the interconnection hardware in these architectures becomes 
extremely costly as the number of processors increases, and again this effec­
tively places a vague upper bound on the number of processors that can be 
supported. Somewhere between these two extremes of cost and connectivity 
there are a dass of architectures with interconnection schemes that are not 
Jull connection networks and where the size (and hence the cost) remains 
manageable for large numbers of processors. In the following sections of this 
chapter we look at these three categories of shared-memory multiprocessor, 
and for each category we discuss one example machine. 

7.1.1 Sequential-access shared-memory systems 

Conceptually, a sequential-access shared-memory architecture is one in wh ich 
a number of processors share a common route to gain access to a global 
memory space. This is illustrated in figure 7.2, which shows a number of 
processors connected to a number of memory modules via a common bus. 
This is a natural extension of conventional single-processor buses, which 
were designed originally for their low-cost and high degree of flexibility. The 
major shortcoming of a common bus, in a shared-memory multiprocessor, 
is self evident; the data transfer capacity between processors and memories 
is determined by the bandwidth of the bus, and is therefore constant. This 
limits the number of processors that can be usefully incorporated into such 
a system, and hence fixes an upper limit on performance. 
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Figure 7.9 Multiprocessor system connected by a star-point network 

The low cost of bus-structured multiprocessors has however proved to 
be advantageous for a number of small-scale parallel systems, yielding high 
performance/cost ratios without any pretensions of scalability. For configu­
rations of between 1 and 20 processors, a bus-structured architecture can be 
a most effective interconnection mechanism, as witnessed by the evolution 
of commercial systems such as the Sequent Balance 8000 and the Encore 
Multimax, to name but two. 

A sequential memory architecture can also be implemented with a star­
point network, as illustrated in figure 7.3, although the cost is generally 
higher than a bus. An example of a star-point network is the MU5 Exchange 
[MI79], in which the MU5 and PDP-11 computers shared memory, 1/0 and 
Block-Transfer devices through a 100ns cycle-time packet-switched network. 

With any shared resource, access confiicts can occur, and some me ch­
anism for arbitrating between contenders for these resources is required. 
Two options are open to the designer; either a centralised mechanism or a 
distributed mechanism. In both cases a confiict resolution strategy is re­
quired. System costs can often be minimised by having a central arbitrator, 
although this adversely affects reliability since the system then becomes re­
liant on a single component. A distributed arbitration mechanism increases 
the cost of each processor, but prornotes reliable or fault-tolerant behaviour. 
The performance of the arbitration strategy mayaiso be improved by dis­
tributing the mechanism for performing arbitration amongst the contenders 
for the resources. 
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Conflict resolution strategies 

In order that utilisation of the available bus bandwidth be maximised, the 
resolution of simultaneous requests far the bus must be performed in a time 
which is less than the bus cycle time. This means that the algorithm for 
assigning priority to bus devices must be implemented in hardware. 

Many algorithms for assigning priorities have been devised, and their 
characteristics are well-known. Probably the simplest algorithm is the fixed­
priority algorithm. As its name suggests, the fixed-priority algorithm as­
signs a fixed priority to each contender for the shared resource and allocates 
cycles accordingly. This algorithm is useful in single-processor bussed archi­
tectures for assigning permanent priorities to time-critical devices, such as 
disks, but its lack of 'fairness' makes it particularly unsuitable for multi pro­
cessor systems. Fairness can be defined in terms of the standard deviation 
of average wait-times perceived by contending devices, with a low standard 
deviation indicating a fair arbitration algorithm. For example, an algorithm 
which always gives rapid attention to some devices and always gives poor 
attention to others, will have a significant spread of average wait-times. 
Conversely, an algorithm which does not favour any particular device, or 
group of devices, when allocating bus cycles, will have approximately equal 
wait-times on all devices. 

A much fairer method of sharing the limited resources of the bus is the 
fixed time-slice algorithm, in which bus cycle x is allocated to processor 
I x In regardless of whether that processor is requesting a cycle. Hence, 
each device gets one cycle in n, and may have to wait up to n - 1 cycles 
before receiving attention. The relatively poor bandwidth available to indi­
vidual processors makes this scheme inefficient when devices are operating 
sporadically, or in bursts. 

The fixed priority and fixed time-slice algorithms are essentially static 
algorithms; more sophisticated algorithms resort to using dynamic device 
priorities in order to combine the throughput of static priority with the 
fairness of time slicing. Two important algorithms of this type are the least 
recently used (LRU) and the cyclic priority (CP) algorithms. The LRU 
algorithm is a well-known algorithm from Operating Systems [Lis88] which, 
as its name suggests, assigns the lowest priority to the processor which used 
the bus most recently and assigns the highest priority to the processor which 
used the bus the least recently. The usual way to implement this is with 
a central arbitrator containing an ordered list of bus devices. Whenever 
a bus device is allocated a bus cycle, the device given the cycle is placed 
at the bot tom of the list. Then arbitration is performed by selecting the 
highest requesting device in the list. Conversely, the CP algorithm can 
be implemented as a distributed arbitration algorithm through the use of 
a closed daisy chain mechanism. The modification of priority occurs by 
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assigning the highest priority to the device whose position in the chain is 
immediately after the device which last used the bus. 

Finally, the algorithm with the minimum average wait-time (and also 
the smallest spread of wait-times) is the first-come-first-served algorithm. 
However, this requires the order of occurrence of requests to be known in 
order to operate correctly, and this is difficult to discern when multiple 
requests can occur with very little time interval between them. In practice 
this algorithm is not used for bus arbitration, even though it is optimal. 

Effects of scaling 

One can assess the usefulness of sequential access shared-memory multipro­
cessor systems by analysing how the cost and throughput vary in response 
to changes in the number of processors in the system. The cost, C, can be 
defined quite simply in terms of the basic cost of the bus backplane, b, plus 
the cost of n processors. The cost of each processor is equal to the cost of 
the processing hardware p, plus the cost of the bus interface logic /. Hence, 
for an upper bound of N processorSj 

C = b + n(p + l) {o ~ n ~ N} 

If p and I are genuinely constant then C represents a linear cost function, 
within the specified bounds. The upper bound N is determined by three 
factorsj the bus bandwidth, physical constraints on the length of the bus, 
and electrical fan-out limitations. The bandwidth available on the bus de­
pends on the technology used in the bus interface logic of each bus device, 
and on the protocol used to implement global read and write cydes. The 
bandwidth required by each processor depends on the frequency with which 
requests are generated. The propagation time of signals on the bus limit 
the length of each bus signal to around 1 metre, and this limits the size of 
a bus-connected system to a single card-frame. The fan-out of the devices 
used in the bus interface circuitry will also place a limit on the maximum 
number of bus devices which can shared the same electrical signals. In 
practice, this will be on the order of twenty devices. 

In theory the throughput of a sequential access device, such as a common 
bus, is equal to t;l, where tc is the bus cyde time. However, in practice 
this is reduced by a utilisation factor f {O ~ f ~ I}. This reduction in 
throughput is caused by occasional requests failing after being allocated a 
bus cyde. In a multiprocessor system this occurs when memory modules are 
'busy' when they receive requests. A memory module is considered 'busy' 
if it is performing a cyde on behalf of another processor, or if the location 
requested is 'locked-out' on behalf of another processor in order to ensure 
exdusive access to a shared data structure. This occurs during spin-lock 
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operations (see section 7.3.2), and can result in a serious degradation of bus 
performance. 

Bus utilisation can be improved by providing larger numbers of memory 
modules, hence reducing the prob ability of modules being busy, and by 
increasing the re-try intervals for locked-out memory requests exponentially. 

The main points to note about bus-connected multiprocessor systems 
are that, however weIl engineered they may be, the maximum configuration 
is limited to around 20 processors with current technology, and the prospects 
for improving this with future technology are not good. In addition to the 
problem of scalability, synchronising processes through flags held in memory 
can seriously degrade system performance. In spite of these difficulties se v­
eral commercial systems have emerged, and the innovative techniques used 
to circumvent the above-mentioned problems are explained with reference 
to one particular machine, the Sequent Balance 8000, in section 7.2. 

7.1.2 Highly-connected shared-memory systems 

A natural method of alleviating the bottleneck of a single bus in a shared­
memory multiprocessor is through the provision of multiple buses, and this 
technique has the added advantage of introducing some degree of fault­
tolerance to the interconnection mechanism (often the most error-prone 
component in any system). The multiple-bus technique was used in the 
Pluribus system [KEM*78], a multiprocessor architecture in which small 
numbers of Lockheed SUE processors were connected to independent pro­
cessor, memory and 1/0 buses. Although Pluribus used multiple buses 
primarily to improve system reliability, an important consideration in high­
performance architectures, the possible application of this technique for 
increasing the processor-memory bandwidth is obvious. 

The number of buses in a multiple-bus architecture could be extended 
until there are as many buses as there are shared memory modules, at 
which point the interconnection between processors and memories effec­
tively would become a cross-bar switch. This is the other extreme of con­
nectivity from the sequential-access mechanism considered earlier, and one 
which has been used in several small and medium sized systems. This ap­
proach to processor-memory interconnect is really only suitable for a 'herd 
of elephants' configuration (as opposed to an 'army of ants' configuration) 
in which a relatively sm all number of powerful processors are used (as op­
posed to a very large number of low-powered processors). Probably the 
most influential multiprocessor system to use this form of interconnection 
between processors and memories was the C.mmp system, although sub­
sequent machines such as the Stanford S-1 [Wid80] and the commercially 
available IP-l have also used this interconnection technique. 
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7.1.3 Scalable multiprocessors 

The machines we have looked at so far in this chapter have been relatively 
smaIl-scale systems, comprising less than twenty processors. Architectures 
which connect their processors via a single sequential channel, such as a bus, 
are limited by bandwidth constraints, electrical properties and physical wire 
lengths. Conversely, architectures which solve the bandwidth problem by 
using cross-bar switches suffer from a growth in hardware complexity which 
is proportional to n 2• Somewhere between these two extremes lies a family 
of architectures with better than n2 hardware cost as weIl as communication 
mechanisms which can support much greater numbers of processors. These 
systems rely on the use of multi-stage interconnection networks for the 
manage ability of their complexityl. Whilst it can be shown that there are 
still problems in scaling multiprocessor systems connected by multi-stage 
interconnection networks, quite large systems can be constructed using this 
style of architecture. 

In the following sections we examine the architecture of three very dif­
ferent shared-memory multiprocessors, each of which uses one of the three 
types of processor-memory interconnect described previously. We ex amine 
the design decisions involved and assess their performance and scalability. 

7.2 The Sequent Balance 8000 

The constraining nature of common-bus multiprocessor architecture stimu­
lates the ingenuity of designers, who then produce sophisticated solutions. 
The Sequent Balance is a good example of this phenomenon, as it incorpo­
rates special techniques for providing very high bus bandwidth as weIl as 
for supporting primitive locking operations. 

The designers of the SB8000 started out with the knowledge that in 
previous multiprocessor systems each additional processor contributed only 
0.8 X the actual performance of each processor already in the system. 
Hence, points on the speedup curve for such a system would typically be 
1, 1.8, 2.5, ... This diminishing return made each successive processor less 
and less cost effective. Therefore, careful engineering of the critical compo­
nents is required in order to alleviate this problem, and the remainder of 
this section describes how this is achieved in the Sequent machine. 

The SB8000 system is an homogeneous multiprocessor system, capa­
ble of supporting between two and twelve identical processors, based on the 
National Semiconductors NS32032 32-bit microprocessor. Each processor is 
supplied with a floating-point coprocessor and memory management hard­
ware. All processors share a number of common memory modules via a 

10ther interconnection structures, such as trees of processors, have been proposed 
[Lei85,IEH*85] but are beyond the scope of this book. 
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26.7 M byte/s system bus, providing up to 28 Mbytes of primary storage. 
All processors share a single copy of the Unix-like operating system, and 
in order to reduce global memory contention each processor has a private 
cache for storing recently used instructions and data. This is a two-way 
set-associative cache with an 8 Kbyte capacity. Transfers between main 
memory and the cache occur in units of 64-bits, yielding an effective hit-ratio 
of 95 per cent. The block structure of the SB8000 is shown in figure 7.4. 

The SB8000 has an orthogonal architecture, which means that all mem­
ory, 1/0 and interrupt resources are accessible to all processors. These 
resources are allocated dynamically. Hence, a process scheduler assigns pro­
cessors from the pool of processing resources, earning it the title 'processor 
pool' architecture. The fair distribution of work requires careful hardware 
and software design to ensure that there is good utilisation of all resources, 
especially the pool of processors. Central to this theme is a custom co-
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processor chip, known as the System Link and Interrupt Controller (SLIC), 
which is optimised to perform tasks which normally cripple the performance 
of less sophisticated bus-structured multiprocessors. 

7.2.1 Cache consistency 

Since each processor has a private cache, the problem of maintaining cache 
consistency arises. It is possible for multiple copies of shared data items to 
exist in two or more caches throughout the system and, when a processor 
updates its own copy, those belonging to other processors must reflect this 
change. Naturally the master copy held in global memory must also be 
updated. Therefore the SB8000 cache employs a 'write through' technique, 
causing each processor write cyde to appear on the system bus. Then, when 
aglobaI write cyde occurs, two things happen; firstly the correct location in 
global memory is updated and, secondly, all cached entries for that location 
are invalidated throughout the machine. This is achieved through the use of 
a technique known as 'bus watehing' , in which the control logic associated 
with each cache monitors every bus cyde in order to detect write cydes to 
memory locations cached locally. Hence, by comparing bus addresses with 
the addresses of blocks cached locally, it can recognise when writes to such 
blocks occur. Invalidating the cache entry, rather than assimilating the data 
on the system bus, simplifies the logic required, but me ans that subsequent 
re-reading of data is required. 

In the SB8000 it has been observed that write-cydes constitute 10-
15 per cent of all processor cydes and, although this is a relatively small 
proportion, if each processor waited for the completion of its write cydes 
before continuing processing, a significant amount of time could be wasted. 
The cache therefore incorporates a write buffer, as illustrated in figure 7.5, 
to permit the processing of write-through cydes to proceed in parallel with 
subsequent instructions. 

Clearly, the write-through operation imposes a certain degree of se­
quentiality on the system as a whole, since the address comparison which 
every cache controller must perform effectively steals a cyde from all caches 
simultaneously. This is the price which must be paid for maintaining data 
consistency in a transparent multi-cache environment. 

7.2.2 The SLIC 

Every processor, memory controller, 1/0 channel and bus controller has 
associated with it a System Link and Interrupt Controller (SLIC) chip. 
The SLIC is effectively a coprocessor providing the functions required in a 
shared-memory multiprocessor, but not present in commercially available 
microprocessors (such as the NS32032). In addition to providing these extra 
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functions, the SLIC also contributes to the parallelism in the system by 
operating independently from the system bus. 

The functions of the SLIC are three-fold. Firstly, between them the 
SLIC devices manage the distribution of incoming interrupts, and they do 
this by dynamicallY assigning each interrupt to the processor which is cur­
rently executing the lowest priority task. In order organise the distribution, 
all controllers communicate with each other across a dedicated serial bus, 
somewhat similar in operation to an Ethernet. The structure of a SLIC chip, 
and its connections to the SLIC bus, are shown in figure 7.6. It is interesting 
to note that some of the most time-critical functions of this shared-memory 
architecture are actually implemented within a message-passing multiple­
coprocessor sub-system, and not through the shared memory. 

The second function of the SLIC, and another time-critical fU'1ction, is 
the manipulation of system-wide semaphores. As shown in figure 7.6, each 
SLIC contains a cache of semaphores. Effectively these are single-bit protec­
tion Hags, through which all high-level mutual exclusion and synchronisa­
tion facilities are implemented. An important consequence of implementing 
processor synchronisation primitives with dedicated hardware is that spin-
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lock operations do not need to access global memory via the system bus. 
Spin-Iocks can present quite a heavy load on the system bus, and therefore 
any technique which removes this load must improve the performance of the 
whole system. Note however, that this migration of functionality can only 
improve memory bandwidth, and cannot solve the performance problem 
caused by the 'busy waiting' which occurs during spin-lock operations. 

The third function of the SLIC is to act as a supervisory agent and com­
municate with other SLICs to perform system diagnostics and debugging. 
It can, for example, take the resources for which it is responsible 'off-line' 
and notify the system. Similarly, when a new processor card is inserted, 
the SLIC informs the other resources via the SLIC bus, and the system 
automatically re-configures itself without further physical modification. 

The SLIC chip is implemented using 3J.lM CMOS gate-array technology, 
and the SLIC bus is implemented as a two-wire multi-drop seriallink using 
wired-OR logic and incorporating collision-detect circuitry. The SLIC rep­
resents a very useful innovation, contributing heavily towards the efficient 
engineering of the sequentially accessed shared-memory of the SB8000. The 
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other major component is of course the system bus. 

7.2.3 The SB8000 system bus 

Designing a shared-bus for a multiprocessor machine is a difficult task, 
and one made more difficult by the need to reconcile two fundamentally 
conflicting design criteria. The bus must provide high bandwidth and sym­
metrical access between all processors and system resources, including 1/0 
sub-systems, and yet it must do so with the minimum interfacing complexity 
since low-cost is one of the primary reasons for choosing a bus interconnect. 
In order to achieve the necessary raw bandwidth to support up to twelve 
processors the SB8000 system bus uses a 10 MHz synchronous protocol, 
and to reduce the complexity of the interface hardware to less than 20 chips 
it uses a time-multiplexed address and data path. The interface logic is 
implemented in '74F series' (fast) TTL. 

If each processor retained control of the bus throughout the complete 
duration of a memory operation, a large proportion of the bus bandwidth 
could be wasted. This is because while the bus can transfer arequest to 
the memory and a response to a processor in 100 ns, the latency of each 
memory operation is around 300 ns. Therefore, the bus incorporates a split 
protocol in which processors relinquish the bus between issuing requests and 
receiving responses. In effect the bus masters send request packets to the 
bus slaves, who in turn send response packets back to the masters. Each 
packet transfer takes 100 ns, with the exception of a write-response, which 
is simply an event with no associated data, and which is implemented via 
the control path. Write responses can therefore occur in parallel with other 
bus transfers, again helping to maximise the useful bus throughput. The 
bus protocol also permits data transfers to take place in variable-Iength 
packets up to 8 bytes long. 

Decoupling the bus protocol from the memory latency enables multiple 
memory controllers to be interleaved, since several requests (hopefully to 
different controllers) can be active at the same time. The combination of 
these techniques results in a quoted peak bandwidth of 40 M bytes/s and a 
quoted sustainable bandwidth of 26.7 M bytes/so 

A protocol which splits requests and responses can lead to situations 
in which multiple requests arrive at a single destination (a memory con­
troller or 1/0 bus adapter) in rapid succession, and at a higher burst rate 
than they can be serviced. In the SB8000 this problem is solved by pla­
cing request and response queues in all destination devices. Then, having 
provided queues to smooth out transient peaks in the flow of requests and 
responses, a mechanism for preventing these queues from overflowing is 
required. There are two ways this problem can be approachedj the first in­
volves sending negative responses to a requesting device if there is no room 
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in the request buffer to store an incoming request. Then, so me time later, 
the same request must be re-tried. This is a form of 'busy waiting', since 
extra cycles are introduced to perform periodic checks on the status of the 
destination re quest queue. If contention for one memory module is high, 
these re quest and negative response cycles will soak up a large proportion 
of the available bus bandwidth. The second way only allows arequest to 
be issued if a free place in the destination request queue exists. This means 
that every requester must maintain local information on the status of all 
destination queues. An unfortunate consequence of this is that the logical 
complexity if each bus requester then becomes proportional to the size of 
the system, and system complexity becomes non-linear. The advantage is 
that, even when the bus is experiencing very heavy loading, each bus cycle 
carries useful information. The Sequent Balance 8000 uses the latter tech­
nique in the knowledge that the slightly non-linear logical complexity has 
very little bearing on the actual size or cost when system sizes are limited 
by bus bandwidth. 

7.3 C.mmp 

In 1971 a project was initiated at Carnegie-Mellon University to design the 
hardware and software for C.mmp [WB72], a multiprocessor system using 
minicomputer processors (DEC PDP-lls). Gnce completed, the system 
ran for about ten years and proved to be a valuable research tool for both 
computer architects and users. C.mmp was intended to be symmetrieal, so 
that replicated components could be treated as an anonymous pool, with 
no one of them being special in any way. It was also to be a general purpose 
system, in which parallelism could be exploited at both the task and the 
process level. The system therefore contained a pool of processors, and 
a number of independent tasks, each of which could contain a number of 
parallel (and interdependent) processes. 

The symmetrical nature of the hardware can be seen from figure 7.7 
which shows the configuration of the system. The 16 PDP-ll processors 
(PO-P15) were connected to 16 independent memory banks via a crosspoint 
switch (Sm) which permitted any processor to access any memory. A path 
through the switch was established independently for each memory request 
and up to 16 paths could exist simultaneously. Memory contention was 
handled at the inputs to the switch. The interrupt mechanism was also 
symmetricalj every processor being able to interrupt every other processor 
(including itself) with equal ease. 

As a means of reducing switch and memory contention and providing 
faster memory access, the design permitted the inclusion of a cache memory 
in each processor. The problem of cache consistency, which we observed in 
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considering the design of the IBM 3090 (volume I section 3.3.3) and the 
Sequent Balance (section 7.2.1), was to be solved by only creating cache 
entries for information taken from read only pages. This would have in­
cluded all instructions, of course. Simulation studies showed that a small 
cache of 256-512 words would capture 79-90 per cent of eligible references 
and give an overall improvement in system performance of 10-40 per cent. 
In practice cost prevented the inclusion of cache stores in the system actu­
ally constructed and code sharing among all processes in a multiprocessor 
application proved to be a significant problem [WH78]. 

Symmetry in software implies that there must be no master-slave rela­
tionship among the processors. Thus on C.mmp any processor could execute 
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any part of the operating system at any time, subjeet to mutual exclusion 
on aeeesses to shared data struetures. At the user level, a job eould exe­
eute on any proeessor, and would frequently switch from one processor to 
another many times during execution. 

The requirement for a general purpose system proved more difficult to 
satisfy [WH78]. For example, it was possible to partition proeessors and 
memories but not to run the operating system kernel (Hydra) in more than 
one partition. The major obstacles to this were the difficulty of providing 
meaningful communication between what would be, in effect, two separate 
operating systems, and the lack of sufficient peripher als to allow each par­
tition to have an adequate complement of devices. Access to peripherals 
was by a second type of switch (Su in figure 7.7) which allowed one or more 
PDP-ll Unibus extensions to be connected to any one of the processors' 
Unibusses. In order to avoid the cost of determining dynamically whieh of 
the processors was currently managing a particular peripheral, the alloca­
tion of a Unibus extension to a processor was made on a relatively long 
term basis (from a fraction of a second to several hours). 

7.3.1 The small address problem 

The 16-bit address space of the PDP-ll allows user programs to address 
no more than 64 Kbytes of memory. In C.mmp the amount of memory 
available was much larger than this, however, amounting to 3 Mbyte. Some 
form of address relocation was clearly necessary, but the situation here was 
the reverse of that pertaining in most virtual addressing systems, where a 
processor can address more memory than is provided in hardware. 

The software/hardware facility provided in C.mmp to solve this prob­
lem involved partitioning the address space of each processor into eight 4 
Kword pages. A user was permitted an indefinite number of pages, but 
could address only eight of them at any instant. Facilities in the operating 
system allowed the user to designate dynamically wh ich pages were to be 
addressable. Relocation of these pages into an overall 21-bit address space 
was achieved through the use of four sets of relocation registers, known as 
the Dmap (figure 7.7). Two bits in the processor status word (inaccessi­
ble to user programs) were used to provide the additional two address bits 
available on the Unibus. These bits then selected one of the four sets of 
relocation registers and the top three bits of the 16-bit user address selected 
one of eight registers within the set. 

At the outset of the project it was assumed that the 16-bit limitation 
would be offset by the ability to create multiprocess programs, and that a 
typical program would be organised as a large number of processes, each of 
which would only need to address a small amount of memory. This turned 
out to be true for code in many cases (although multiprocess algorithms did 
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not always produce small programs), but less often for data. In addition, 
the fact that the programmer always had to be aware of page boundaries 
meant that the system was less than ideal. C.mmp was capable of exe­
cuting at a rate of about 6 MIPS and was comparable in size to the CDC 
6600. Consequently, users expected both machines to cope with problems 
of comparable size. As we noted in volume I section 2.2 

"There is only one mistake ... that is difficult to recover from 
- not providing enough address bits ... " 

7.3.2 Locks and synchronisation 

A multiprocessor operating system is required to schedule and coordinate 
the activities of the individual processors. In Hydra the information neces­
sary to make these decisions was contained within a shared data base, and 
the parts of Hydra which made these decisions could be running on several 
processors simultaneously. In order to maintain consistency of the data base 
it was essential that while one processor was accessing or, more particularly, 
updating the data base, all other processors be prevented from accessing or 
changing it. The mechanism adopted involved the use of lacks on the data 
base and portions of programs which accessed lockable data items were re­
ferred to as critical sections. On entering a critical section the program first 
had to check that the lock was not set, and otherwise wait, then set the lock 
(Dijkstra's P operation on a semaphore [Dij65]) and on leaving the critical 
section, reset the lock (Dijkstra's V operation). At one extreme the whole 
data base could be controlled by a single lock, whereas at the other extreme 
every data item could be individually locked. The former case would have 
precluded any parallel operations on the data base, of course, while in the 
latter case the overheads of performing the locking operations would have 
been prohibitive. In practice the number of critical sections in Hydra lay 
in the range 2-7, depending on the path taken through the scheduler. Sim­
ilar mechanisms were used in user program where the synchronisation of 
communication between individual processes was achieved through access 
to lockable shared data items. 

A question which immediately arises is what to do with a processor 
which is waiting to enter a critical section. A number of different solutions 
were tried on C.mmp. The mechanism which gave fastest entry to a critical 
section was the spin-lock. In PDP-ll assembly code the P and V operations 
for a spin-lock are as follows 

P: CMP SEMAPHORE 
BNE P 
DEC SEMAPHORE 
BNE P 

is SEMAPHORE = 1 ? 
loop if not = 1 
decrement SEMAPHORE 
if < 0, return to P 
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V: MOV #1, SEMAPHORE : reset SEMAPHORE to 1 

Thus a processor which is attempting to enter a critical section polIs the 
value of SEMAPHORE looking for a value of 1. When it finds a value of 1 
it decrements SEMAPHORE, and then checks that its value is 0 before pro­
ceeding. If the value is < 0, this implies that another processor which was 
also polIing SEMAPHORE has gained access to the data structure and the first 
processor must continue to wait. 

There are two major drawbacks to using spin-locks. Firstly, a processor 
which is polling is not doing any useful work. Secondly, it is consuming 
memory cycles in the bank containing the semaphore value and, if several 
processors are polling on the same semaphore, memory bandwidth is rapidly 
consumed. In the worst case the processor currently operating on the locked 
data structure will also be accessing this same memory bank and will be 
slowed down as a consequence. In more re cent multiprocessor systems such 
as the CRAY X-MP (volume I section 7.2) and the Sequent Balance (sec­
tion 7.2) this problem does not arise because the synchronisation registers 
are not part of main memory. The use of standard PDP-ll processors 
as components of C.mmp largely precluded this possibility. The spin-lock 
mechanism was therefore only used on small data structures, which would 
only be locked for a few hundred JiS. For larger data structures, two al­
ternative mechanisms were provided, the Kernel Semaphore and the Policy 
Module Semaphore. 

In the Kernel Semaphore mechanism the P and V operations were im­
plemented using calIs to the Hydra Kernel. If a process became blocked 
on a Poperation, because some other process was operating on the rele­
vant data structure, the blocked process was swapped out of the processor 
which was then re-scheduled to run a different process. The blocked pro­
cess was placed on a blocked queue associated with the semaphore and was 
swapped back in, possibly to a different processor, when its turn came. To 
ensure a fast restart, pages belonging to the blocked process were retained 
in primary memory. However, the time taken in blocking and unblocking 
still amounted to several JiS, two orders of magnitude longer than the time 
taken by a spin-lock. 

The Policy Module Semaphore was intended for user programs and was 
implemented by calls to a Policy Module. The principal difference between 
the Policy Module Semaphore and Kernel Semaphore was that blocked pro­
cesses in the former could have their pages swapped out to secondary (disc) 
memory. This could delay arestart by several hundreds of JiS of course, so 
to assist in maintaining performance and to avoid unnecessary swapping, 
no pages were swapped until aperiod of a few hundred JiS had elapsed after 
blocking. 
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The C.mmp machine was a pioneering project, with features such as the 
symmetrical nature of the architecture surviving in to present day multi­
processors. However, problems such as the costly interconnection structure, 
and the inefficient implementation of process synchronisation primitives, 
were well-Iearned by the designers of subsequent shared-memory multipro­
cessors. 

1.4 The BBN Butterfly 

Our primary reason for examining this particular machine is that while 
many large-scale shared-memory architectures have been proposed, the But­
terfly is currently the only such machine of its size, which is commercially 
available. We shall see that, as with all practical systems, the Butterfly 
achieves good performance within the range of sizes for which it is engi­
neered but that venturing above this range with the same architecture will 
not necessarily produce the same results. 

The origins of the Butterfly can be traced back to an earlier BBN sys­
tem called Pluribus (see section 7.1.2), a multiple-bus parallel processor 
designed for high-reliability message processing on ARPANET. Subsequent 
research, into the design of a successor to Pluribus, began around 1975 
with extensive support from the V.S. Defense Advanced Research Projects 
Agency (DARPA). Although the machine that emerged was originally in­
tended to be used for a mixture of military and government applications, 
the commercial value of the Butterfly is now also being exploited. When the 
Butterfly was launched commercially in 1985 four machines out of an ex­
pected 10 had already been delivered to DARPA, and one of these machines 
was a 128-processor version. 

7.4.1 Overview of the Butterfly 

The Butterfly parallel processor [CGS*85,RT86] is a tightly-coupled shared­
memory machine with homogeneous processing elements. The machine's 
primary memory is distributed amongst the processors, with each pro­
cessor having either 1 or 4 Mbytes of dynamic memory. The processor­
memory pairs, known as processing nodes, are interconnected by the But­
terfly Switch, details of which are presented later in this section. The block 
structure of the Butterfly architecture is illustrated in figure 7.8. Perhaps 
the most significant feature of the Butterfly is that it is purposefully en­
gineered to be cost-effective over a wide range of configurations, up to a 
maximum of 256 processing nodes. The Input and Output are distributed 
amongst the processing nodes, with up to four 1/0 device adapters per 
node. These may be either IEEE 796 Multibus adapters or a proprietary 
adapter containing eight serial ports (4 X RS-232 and 4 x RS-449). 
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Each Butterfly card frame holds up to 16 processing nodes, and four 
card frames make up a rack. The largest eonfiguration would therefore 
oce~py eight racks. In order to maximise the system reliability for such large 
numbers of processing nodes eaeh node has a private 'on-board' switched­
mode power supply. 

7.4.2 Butterfly processing nodes 

At the heart of each processing node in the Butterfly system is a Motorola 
M68000 family mieroproeessor. This may be either a M68000, operating 
at 8 MHz, or alternatively if floating-point performance is important, an 
M86020 processor with memory management and floating-point coproces­
sor, operating at 16 MHz. 

In section 7.2 we saw how the interprocessor communication functions 
required in the Sequent Balance were implemented with a custom coproces­
sor, and in the Butterfly a similar approach is used. Each processing node 
has a 16-bit user-mieroprogrammable bit-slice control processor, based on 
the AMD 2901, known as the Processor Node Controller (PNC). The PNC 
intercepts all memory references from the microprocessor and aceesses either 
loeal or non-Iocal memory on its behalf. The PNC also handles all incom­
ing memory requests from non-Iocal proeessors, arriving via the Butterfly 
Switch. With the aid of the memory management hardware the PNC trans­
lates virtual addresses into physical addresses, thus permitting the software 
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to locate each segment of virtual memory anywhere in the system. This 
results in the memory of all processing nodes appearing to the application 
software as a single global address space. 

The local memory associated with each processingnode consists of 
1 Mbyte of dynamic memory, expandable to 4 Mbyte with the addition 
of a 'daughter board'. Each processing node also has a bi-directional inter­
face to the Butterfly Switch, and its own private Input-Output bus. The 
block-structure of a processing node is illustrated in figure 7.9. 

From an architect's viewpoint the most interesting features of the But­
terfly machine are the Butterfly Switch and the PNC, as together these two 
components define the time penalty associated with non-Iocal memory ac­
cesses, and hence the intrinsic machine latency. However, because there is 
a time differential between local and non-Iocal memory references, and be­
cause messages passing through the switch can interfere with one another, 
the way in which data are distributed throughout the shared address space 
also plays an important role in determining the machine's overall perfor­
mance. 
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7.4.3 The Butterfly switch 

The Butterfly switch provides a mechanism for passing messages between 
the Node Controllers of different processing elements. These messages nor­
mally take the form of memory cycle requests and acknowledgements, and 
since the assembly and dissassembly of message packets is performed by 
the PNC, the microprocessors perceive transparent access to both local and 
non-Iocal memory. The PNCs are also capable of performing block transfer 
operations to facilitate the movement of blocks of memory from the local 
memory of one processing node to another. 

The 'black box' specification of the Butterfly switch is a relatively sim­
ple one. As far as the processing no des are concerned, it consists of an 
equal number of input and output ports, which need not be apower of two, 
although normally they would be. The ports are uniquely labelIed and, 
to enable routing to be performed 'on the fly' as messages pass through 
the switch, each message incorporates a header containing the label of its 
destination port. The insertion of messages into the switch from different 
sources occurs asynchronously, and the time taken for a message to propa­
gate from its source to its destination depends on the number of inputs to 
the switch and the loading on the switch du ring routing. The asynchronous 
nature of the M68000 bus enables variable round-trip delays to be hidden 
from the processor, although they do have an effect on system performance 
as we shall see shortly. 

The network messages, containing non-Iocal memory addresses, a data 
field and so me control bits, are approximately 80-bits long and, to keep 
the complexity (measured here in terms of inter-stage wiring) of the switch 
no des within manageable limits, the switch nodes serialise the packets into 
8-bit chunks. These 8-bit chunks are piped through the switch at a rate of 
one chunk every 100 ns, resulting in a minimum switch latency of approxi­
mately 10 cycles per packet. 

Switch topology 

The Butterfly switch is a multi-stage network which uses a variant of the 
shuffie permutation (see section 3.3.3) to connect 4-input and 4-output ex­
change boxes. These exchange boxes are effectively 4 X 4 cross-bar switches, 
and to illustrate this a Butterfly switch with 16 ports is depicted in fig­
ure 7.10. 

Routing within a single node is performed by labelling the four output 
ports uniquely in the range {o ... 3}, then assigning a route from each input 
port to the output port selected by the two least significant digits of the des­
tination label associated with each incoming packet, as shown in figure 7.10. 
As the destination label for a packet passes through each switching node 
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the two least signinficant digits are 'removed', thus exposing the next two 
digits to the routing function in the subsequent stage of the network. If at 
any time during the setting up of a route through the switch, a routing con­
flict occurs, one of the conflicting messages will proceed unaffected whereas 
the other must retrace its path out of the switch, to be re-transmitted af­
ter a short delay. The importance of clearing down a partially routed, but 
blocked, link from the point in the network where the conflict occurred back 
to the source node, will become apparent when we discuss the performance 
of the switch. 

The routing function 

The actual routing function used by the Butterfly switch can be expressed 
formally by defining it as a composite sequence of permutations, Bni , which 
is applied to an input packet of the following form. Let the input packet 
consist of a he ader containing an n-bit destination label D = {dn , ... ,dl }. 

Let us also assurne that during the routing of the packet through the switch 
the packet he ader is located at the kth stage, with an intermediate label 
given by P = {Pn, ... ,Pl}. The switch network is characterised in terms of i, 
the radix of the switch nodes. The radix determines how many channels are 
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switched within a single switch node, and this is given by c = 2 i. Hence, the 
total number of active stages in the network is given by s = log2i N = '1 
for an N-port Butterfly switch. We can hence define Eni , the exchange 
permutation performed in each switching node on a packet with destination 
label D when at an intermediate label P, to be 

Eni ({P, D)) = {{Pn,Pn-l, ... ,PHI, di , di - l , ... , d l }, 

{di, di-l, ... , d l , dn, dn-l, ... , di+1}) 
(7.1) 

and the shufHe permutation applied to the connections from stage k to stage 
k + 1 is then 

(7.2) 

where (J;;X(P) is the xth inverse sub-shufHe applied to P (see section 3.2). 
This permutation is defined formally, as 

Informally, this defines a right-circular rotation of the binary representation 
of the least significant ik bits of P, by i places. Effectively, E~ and S~ k 

map from (P, D) to (Pi, D'), where P and pi are the entry and exit labels 
of the packet through the kth stage in the network, and D and D' are the 
target (destination) labels before and after the routing takes place at the 
kth stage in the network. 

The Butterfly switch as a whole can now be defined as the composition 
of Eni and Sn:k over n/i stages, thus 

(7.3) 

This permutation is illustrated in figure 7.10, for 16 processing nodes and 
i = 2 (4 X 4 switch nodes). Note, there is no shufHe permutation at the 
output of the switch, since the last shuffie permutation is Si j' which is n,n t 

equal to I, the identity permutation. 
The logic of the Butterfly permutation indicates how a route through 

the switch is set up, but does not give any indication of how weIl such a 
network performs under differing conditions of loading. To ascertain this 
we must explore the available bandwidth and the prob ability with which 
packets collide during routing through the switch. 

7.4.4 Performance 

Assessing th~ performance of a general purpose parallel computer, such as 
the Butterfly, is an important exercise if lessons are to be learned, particu­
larly in the area of scalability. A realistic assessment, as we saw in earlier 
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chapters, takes account of both the architecture and the applications for 
which the architecture is intended. By definition a general purpose parallel 
computer has no single dass of applications for wh ich it is best suited, and 
therefore we must model not only the architecture, but also the character­
istics of an arbitrary application on that architecture. 

It is possible to model the behaviour of the Butterfly by characterising 
its structure in the form shown in figure 7.11. In this model there are N pro­
cessing nodes, each of which executes instructions at a rate of I instructions 
per second. Memory requests originating from each processor are routed 
through that processor's local PNC, and are subsequently serviced either by 
the local memory associated with that processor, or by one of the non-Iocal 
memories via the Butterfly switch. It is possible to model the performance 
of a Butterfly node in terms of the average time required to execute each 
instruction, and a significant factor he re is the average time each instruc­
tion spends interacting with memory. This is determined by the average 
number of memory requests per instruction multiplied by the average la­
tency associated with each memory operation. An important characteristic 
of the Butterfly is therefore how weH the Butterfly switch can transport the 
memory requests and associated acknowledgements between the PNCs of 
different nodes. 

The latency of local memory requests can be modelled, quite simply, in 
terms of the basic local memory access time (ta) and a multiplying factor 
(A) which represents the effect of externalloading on that memory module. 
Hence 
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Figure 7.12 Activity-time graph for non-Iocal accesses 

The latency of non-Iocal requests is a slightly more complex function since 
it depends critically on the transit time of the memory request and acknow­
ledge packets through the Butterfly switch. This is illustrated in figure 7.12 
which shows the component times involved in non-Iocal operations. The set­
up time of the PNC consists of the time required to assemble a packet prior 
to insertion into the network, and this is essentially constant. However, the 
packet transit time depends on many factors, and therefore deserves a more 
thorough investigation. 

The transit time of a single packet through the Butterfly switch consists 
of two parts. Firstly, there is the time it takes to propagate a packet through 
the switch mechanisms, and secondly, there is the possible time penalty 
associated with those packets which collide and require re-transmission. 

An s-stage Butterfly switch, with a dock period of tcp is capable of 
propagating an m-bit message in b-bit chunks, with a total delay of Tp 

seconds, such that 

Tp = tcp (s + f71- 1) seconds 

Essentially, the s switch stages operate as a pipeline of length s, switching 
eight bits in each dock period. In fact, the processing node controllers are 
also capable of performing block transfers, and these reduce the effect of s 

on the propagation time. 
The time penalty associated with routing conflicts depends on the sum 

of the following time components. 

1. The time to detect that a collision has occurred. 

2. The time to dear down the switch setting for the blocked packet. 

3. The delay inserted by the PNC before the packet is re-transmitted. 

Collisions in a multi-stage routing network, such as the Butterfly, are more 
likely to occur in the early stages than in the later stages, and hence the 
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average delay between the packet header entering the switch and a routing 
conflict occurring (for those transfers which result in a conflict) will be less 
than stcp /2. The time taken to clear down the switch setting will be equal 
to the time taken to detect the collision, since a 'clear down' signal must 
retrace the path taken during the set-up phase. We may also assume a 
certain delay before a blocked packet is re-transmitted, let us call this 8, 
which is inserted by the PNC to ensure a reasonable probability that the 
availability of the required route will have altered in the time between the 
conflict occurring and the packet being re-transmitted. 

The effect that collisions have on the average non-Iocal access time de­
pends on the relative frequency with which such collisions actually occur, 
and we expect this to be a function of both the connectivity of the switch 
(that is, its configuration) and the connectivity of the application (in other 
words, the switch loading). Consider a single stage of a multi-stage net­
work, as shown in figure 7.13, composed of simple 2 x 2 exchange boxes (see 
section 3.2). If there are x incoming messages (active inputs) distributed 
randomly over the N input ports to the switch, then the average input 
loading on each port of the switch, LI, is 

However, in a multi-stage network the input loading at stage i + 1 will be 
equal to the output loading at stage i, and we can hence define the loading 
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Table 7.1 Survival rate at each stage in aMIN with 2 X 2 nodes 

0 1.000 4 .450 8 .300 
1 .750 5 .399 9 .278 
2 .609 6 .359 10 .259 
3 .517 7 .327 11 .242 

at each stage of the network as 

LI(i + 1) = La(i) 

We can complete this definition of loading, as we know that the output 
loading at stage i is equal to the input loading at stage i minus the probable 
number of packets blocked at stage i. 

Now, the probability of losing a packet due to a blockage in a 2 x 2 
switch node is equal to the probability of both input ports being actively 
loaded, multiplied by the probability of both incoming packets requiring 
the same intermediate destination label. This is equal to 

Hence, the probability of a single output port losing a packet will be one 
half of this, and we can write 

or alternatively, 

( . ) L (') LI (i) 2 
LI ~ + 1 = I t - -4-

Using this equation we can calculate the survival rate of a given input load­
ing through any number of stages, and this is shown in table 7.1 for an input 
loading of unity. We can see from this table that if a 256-node Butterfly 
system were constructed using 2 X 2 exchange nodes, and then operated 
at 100 per cent loading, only 30 per cent of all memory re fe ren ces would 
be routed successfully to their destination labels at each attempt. Clearly, 
this is an unacceptably poor state of affairs, and in this simple model the 
effects of retries and so called 'hot spots', or frequently referenced mem­
ory modules [PN85], are not even taken into account. As a result of the 
poor performance of such a routing network two modifications to this basic 
design are used in the production version of the Butterfly. These involved 
halving the number of stages required for a given value of N, and reducing 
the maximum input loading on each port of the Butterfly switch. 
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We noted earlier that the number of stages in a Butterfly switch is 
10gc(N), where c is equal to the number of inputs to each switch node. 
Thus, by doubling the number of inputs to each switch node, we can halve 
the number of stages required in the network as a whole. Now, instead 
of implementing 2 X 2 switch nodes, we implement c X c switch nodes, 
these being effectively c X c cross-bar switches. We can continue this up to 
the point where each node switches N inputs, at which point the network 
becomes a fuH cross-bar switch. This process of node enlargement also 
reduces the total number of switch nodes in the network from N /210g2(N) 
to N/clogc(N). As evidenced by table 7.1, any reduction in the number of 
stages traversed by a set of messages will yield an improvement in message 
survival rate, and this is the principle upon which the technique of enlarging 
the switch no des is based. 

A reduction in the number of stages in the switch network is clearly a 
good thing; however, by changing the number of connections to and from 
each switch node the prob ability of collisions within each node will also 
change. The throughput characteristics of cross-bar switches of arbitrary 
dimensions have been analysed by Mudge and Makrucki [MM82], who have 
shown that for a uniform distribution of output port addresses, and a prob­
ability, r, of each input in ac X c cross-bar switch being active, the expected 
bandwidth of the switch is BWc(r). 

BWc(r) = c [1 - (1 -D C] (7.4) 

Hence, the survival rate of requests passing through a c X c cross-bar switch 
is Sc(r). 

(7.5) 

Interestingly, as the size of a cross-bar switch grows, the survival rate tends 
towards an asymptotic value Soo (r). 

(7.6) 

So, for a fully loaded cross-bar switch with 5 :::; c :::; 00, the survival rate 
ranges between 67.2 per cent and 63.2 per cent. 

We can now use equation 7.5 to model the throughput of a Butterfly 
switch by applying it recursively over s = 10gc(N) stages, using the following 
rule for evaluating the loading (ri) at stage i {O :::; i :::; s}, 

{ Sc(ri) i:f:O 
ri+l = Sc(l) i = 0 (7.7) 

where l is the input loading to the whole network. Recall that the BBN 
Butterfly switch is constructed from switch no des with a value of c = 4, and 



www.manaraa.com

138 Architecture of High Performance Computers - Volume II 

Table 7.2 Packet survival Vf'. sw~'tching radix 

i c 5 0 (1) 
1 2 .7500 
2 4 .6836 
3 8 .6564 
4 16 .6439 
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Figure 7.14 5urvivability 0/ packets traversing a Butterfly switch (c 
4,[= 1.0) 

hence in order to evaluate the effectiveness of using c > 2 we may compare 
5(0)2)(1) with 52(1). This has been done for values of c which are powers of 
two, and in the range {2 ::; c::; 16}, and the results are shown in table 7.2. 

Progressing from switch no des with c inputs to c + 1 inputs per switch 
node divides the number of stages in the network by half, and this more 
than makes up for the slight decrease in survivability of packets traversing 
4 X 4 switch nodes in comparison with 2 X 2 switch nodes, and this technique 
does therefore improve throughput. 

Using equations 7.5 and 7.7 we can produce a survivability curve for a 
Butterfly switch constructed from cX c switch nodes, given any value for /, 
and such a curve is illustrated in figure 7.14 for 1= 1.0 and c = 4. 

The second method of improving the throughput of a multi-stage in­
terconnection network, wh ich is also implemented in the Butterfly switch, 
is switch de-rating. This involves operating the switch at a reduced input 
loading in order to limit the losses due to routing conflicts. The input load­
ing can be reduced in one of two ways, either the switching elements can 



www.manaraa.com

Shared-memory Multiprocessors 

Packet Survivability 

1.00 ------------------

0.75 

0.50-

0.25 

1.0 2.0 3.0 4.0 

139 

Network 
Derating 
Factor 

Figure 7.15 Relationship between packet survivability and switch derating 
factor for a 5-stage network 

be engineered to operate faster than requests cah be generated from the 
processing nodes, or extra links can be inserted in the network to provide 
more than N links at each stage. The latter technique is also useful from a 
reliability point of view, since the extra links mean there is more than one 
route from each input to each output, and hence failure of any one link will 
not affect the connectability of any pair of processing nodes. The Butterfly 
incorporates an additional stage in the network to provide two paths from 
each sour ce node to each destination node. This increases the number of 
stages by one, but the de-rating of the switch reduces the average loading 
by approximately one half. The effect of de-rating a multi-stage network is 
shown graphically, in figure 7.15, from which it is apparent that derating 
the switch pro duces a marked increase in survivability. 

Manufacturer's performance measurements of the Butterfly, running 
Matrix Multiplication and Gaussian Elimination algorithms, indicate that 
for systems containing 128 processing nodes the overhead due to switch 
contention is a very small part of the total execution time (approximately 
2 per cent) [CGS*85]. The same benchmarks indicate that the overhead 
incurred due to switch propagation time is also quite low (approximately 3 
per cent). It must be stated that both of these algorithms contain a high 
degree of uniformity, and that block transfers of the rows and columns of the 
matrices involved could influence the performance of the switch. Further­
more, the loading on the switch during these operations must have been weIl 
within the peak capability of the switch, since the occurrence of collisions 
was remarkably low. 
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It is clear that the performance of the switch will affect the performance 
of the machine as a whole, and that the rate of non-Iocal requests is cen­
tral to this theme. However, through a combination of optimised switch 
architecture and careful engineering it is possible to produce a multi-stage 
interconnection network for connecting together relatively large numbers 
of microprocessor nodes in a distributed shared memory environment, and 
make it work relatively efficiently. 

7.5 Sununary 

Shared-memory multiprocessors are probably the most conventional form of 
MIMD architecture; they do not alter the model of computation, and they 
can be used simply to provide high performance multi-user systems if that 
is what is required. Small-scale shared-memory systems can be built quite 
easily using high performance buses, as witnessed by the availability of ma­
chines such as the Sequent Balance and the Encore Multimax/Ultramax. 
Large-scale shared-memory multiprocessors can encounter significant prob­
lems related to access contention to the shared-memory modules, and sev­
eral techniques have been devised to overcome these problems. 

As far as commercial systems of this kind are concerned the Butterfly 
machine is the currently largest. However, several other machines using this 
type of architecture have been proposed, and are currently being developed. 
These include the IBM RP3 project [PBG*85,PN85], and the associated 
NYU Ultracomputer project [GGK*83]. 

The extension of the shared-memory model to very large systems is, at 
the time of writing, still an active research area with the problem of access 
contention und er conditions of heavy switch loading yet to be resolved. 
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The connection of a number of parallel processors by means of a common 
shared store suffers from two fundamental problems. Firstly there is the 
difficulty of providing adequate memory bandwidth to support large num­
bers of processors, all of which in principle could be contending for the 
same memory module. Secondly, where processors attempt to coordinate 
their activities through synchronisation variables held in common memory, 
the inefficiencies due to processors idling in a tight loop, and the satura­
tion of vulnerable links in the processor-memory network can lead to poor 
performance. 

Sophisticated solutions to these problems have been proposed, for ex­
ample the fetch & add operators in the NYU Ultracomputer [GGK*83], and 
combining switches in the IBM RP3 design [PN85]. However, these tech­
niques inevitably introduce additional hardware complication and expense, 
and their cost effectiveness is yet to be established. 

A radically different approach to MIMD processing must be sought if 
these fundamental problems are to be avoided, and perhaps the most natural 
alternative is simply to design systems in which processors do not share vari­
ables. An immediate consequence of enforcing such a rule is that there is no 
requirement for generally accessible shared memory, and the attendant dif­
ficulties are therefore avoided. However, if the facility for sharing variables 
is removed, some other mechanism for passing values between processes 
must be provided. The key to this alternative communication mechanism 
is the message-passing paradigm, used for many years in multiprocessing 
operating systems but only recently applied to parallel architectures. 

In a message-passing architecture processors communicate by sending 
and receiving messages. The processors in such systems normally operate 
asynchronously, and so the transfer of information requires the sending 
and receiving processes to synchronise. As a rule, for two processes to 
communicate one must perform a Send_Message operation and the other 
must perform a Receive_Message operation. If the actual times at which 
these operations are initiated are ts and tR respectively then, if ts < tn 
the sending process must wait for the receiving process to catch up, and 
if ts > tR the receiving process must wait. We refer to Its - tRI as the 
wait-time associated with a communication event, and its value is clearly 
dependent on the temporal behaviour of the application and the speed with 
which messages are transfer red fra m process to process. 

141 



www.manaraa.com

142 Architecture of High Performance Computers - Volume II 

In a shared memory multiprocessor the link between two cooperating 
processes is effectively the address of the shared variable(s) through which 
they communicate. In a message-passing system the link between coop­
erating processes exists in the form of a naming convention within the 
Send_Message and Receive_Message operations, and here two alternatives 
are possible. An obvious naming convention would be for each message­
passing operation to name explicitly the partner process (and/or the pro­
cessor on which it resides) for that operation. For example, assuming that 
processes Pl and P2 exist, a message could be sent from Pl to P2 by the 
execution of the following code. 

Process.l Process.2 

Send(P2.message) R~ceive(Pl.message) 

An alternative naming convention can be implemented by directing mes­
sages through named channels. In this case, for two processes to communi­
cate, they must both quote the same channel identifier in their respective 
message-passing operations as folIows. 

Process.l Process.2 

Send(chan_X. message) Receive(chan_X.message) 

When contemplating message-passing systems from a theoretical viewpoint 
it is usually sufficient to consider processes, channels and communication 
operations as existing without reference to any specific implementation re­
strictions. In practice however, this is an over-simplification. The general 
structure of a message-passing multiprocessor system is depicted in fig­
ure 8.1, from which it can be seen that there are two primary components; 
the processing elements (PEs) and the ~essage transfer system (MTS). 

Consider a system in which there are n processors, and m application 
processes. There are likely to be many circumstances und er which m > n, 
and so we must expect each processor to provide a large (but necessarily 
finite) number of virtual processors to which these processes can be mapped 
directly. By multiprogramming a number ofvirtual processors on each phys­
ical processor the wait-time experienced by each virtual processor, during 
inter-process communication, can be overlapped with other useful process­
ing on that physical processor. Whilst these techniques have been used 
in single-processor systems for many years, it is important to address the 
implications of multiprogramming for the message transfer system. For ex­
ample, with both naming strategies mentioned previously it is possible for 
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Figure 8.1 A generic message-passing multiprocessor architecture 

communication events to occur between processes (effectively virtual pro­
cessors) which reside on the same or different physical processors, and the 
MTS protocol must deal with both of these situations. 

8.1 Design issues for message-passing architectures 

Observing that the processing elements in a message-passing multiproces­
sor are essentially equivalent, in function and form, to a conventional uni­
processor, it is easy to see why the majority of innovation and design effort 
is normally expended on the MTS and the inter-process communication 
protocols. As we saw in chapter 6 the granular efficiency of an MIMD sys­
tem depends on the ratio of computation time per communication eveni 
to the communication overhead per communication event. Traditionally, 
the task of preparing and sending an inter-process message has been no­
toriously slow, leading to excessive communication overheads. However, 
this state of affairs need not, and indeed has not, persisted. The primary 
reason why message-passsing is considered slow and expensive is that the 
processing elements in early message-passing systems were implemented 
using conventional processors. A simple examination of the programming 
model of these processors indicates that they embody none of the concepts 
of message-passing and so these must be simulated in software. 

If we refer back to chapter 6 and relate the simulation of a message­
passing processor to the fundamental parameters of granular efficiency, it 
be comes apparent that the simulation of communication leads to large val­
ues for d and I (the proceed/wait decision time and intrinsic communication 
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latency respectively). For example, in the MUSS operating system [FT79J, 
the sending and reception of messages is supported via operating system 
calls (between named processes). Typical operating system implementa­
tions of Send_Message and Receive_Message execute several hundreds of 
instructions per communication event. Consequently, one of the most im­
portant design issues for high performance message-passing multiprocessor 
systems is the minimisation of software intervention during process commu­
nication. 

At the hardware level there are several design issues which affect the 
performance of inter-process communication. Of particular significance is 
the connectivity of the physical processor inter-connection network. There 
are two choicesj either a fully-connected or a partially-connected network of 
processors. If the network is only partially connected then messages travel­
ling between arbitrary pairs of processing elements may have to make several 
passes through the MTS, being forwarded each time by an intermediate pro­
cessor. This store-and-forward technique is common in local and wide-area 
networks where the exigencies of cost dictate the use of sparse communica­
tion networks. However, store-and-forward may steal CPU cycles (as weIl as 
memory cycles) from each intermediary, effectively decreasing the efficiency 
of the processors and increasing the net cost of each message. This is taken 
to the extreme in transputer-based systems (see section 8.2) whereby the 
programmer must implement the store-and-forward mechanism explicitly. 

Modifying conventional programming languages to exploit shared mem­
ory in MIMD systems requires very little in the way of language enhance­
ments, and those which are required are normally quite straightforward to 
implement. The primary reason for this is that there remains a global state 
to which all processors have access, and which adesignated processor can 
initialise and interrogate throughout program execution. Hence, examining 
the state of a parallel application code is conceptually identical to examin­

'ing the state of a sequential application code. In a message-passing system 
there is, by definition, a distributed state which is only accessible via the 
MTS. This can complicate the diagnosis of errors, and even the detection 
of errors. 

The programming language (and perhaps also the programmer) must 
also be responsible for at least an initial placement of processes on to vir­
tual processors. A poor placement is typically one in which processes which 
communicate a significant volume of information are placed at so me dis­
tance. The best placement will minimise the total distance travelled by all 
bits of communicated information. A poor placement will lead to reduced 
performance over the best-case placement, and for that reason should be 
avoided. 

The placement problem can be formalised by identifying the distance 
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between pairs of communicating processes. Let the set of an physical 
processors P = {PI ... Pn}, and let the set of an virtual processors (pro­
cesses) 1.1 = {VI ... Vm }. Communication between two processes running 
on a pair of physical processors (i, j) takes a time which is proportional 
to their physical separation di,i. The actual placement of processes on 
to processors can be defined as a mapping place: process - processor, 
which is a many-to-one mapping. Hence, the physical separation of two 
processes (i,j) is given by dplace(i),place(j). Each communication event can 
be defined as a tripIe (i,j, w) where i and j are the source and destination 
processes and w is the quantity of information associated with that event. 
If the set of an communication events occurring during program execution 
is C = {(i I, jl, wt), ... , (i I, j/, WI)}, then the total cost of an inter-process 
communication can be defined as T 

T = L W.dplace(i),place(j) 
(i,i,w)EC 

The problem of placement is hence a problem of minimising T, often a 
task which cannot be performed prior to program execution. The minimi­
sation of T requires explicit knowledge of all process interactions, including 
which processes communicate and how much information is transferred dur­
ing each event. Since such information is not normally available in practice, 
a less than optimal placement may have to be accepted. Alternatively, a 
dynamic placement may be used whereby the placement alters during pro­
gram execution through the migration of processes. Dynamic schemes are 
only effective when there is a significant amount of locality in the pattern of 
communication since it relies on the assumption that if a pair of processes 
communicated heavily during the interval T - t to T then they are likely to 
do so again in the inter val T to T + t. Migration is typically initiated when 
the cumulative cost of communication between a pair of processes exceeds 
a certain threshold. The choice of which process should migrate is often a 
difficult one, since communication with other processes mayaIso be affected 
by a change of placement. 

As we saw in chapter 6 the latency of communication is an important 
factor in determining the actual speedup achievable for a given degree of ap­
plication parallelism in a shared-memory architecturej in a message-passing 
system the same principle holds. In effect the only difference from a perfor­
mance point of view is that in the message-passing style of architecture the 
scheduling of processes on to processors is restricted by the often prohibitive 
cost of moving processes between processors. 

The remainder of this chapter describes a number of message-passing 
architectures, which for reasons of taxonomy are divided into those which 
communicate via fixed degree networks and those which communicate via 
variable degree networks. 
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Figure 8.2 Conceptual structure 0/ the transputer 

8.2 Transputer-based systems 

A description of the internal architecture of the transputer is difficult to 
justify without reference to occam, the primary language for which it is 
designed, since the architecture of the transputer is optimised specifically 
for executing occam processes. The language occam [INM84,Ros84,BS89] 
has been designed specifically with inter-process communication and explicit 
process parallelism in mind, and this should be borne in mind when read­
ing the following description of the transputer architecture. Section 9.1.2 
presents an overview of the occam language, and in section 9.2.2 an exam­
pIe occam program is developed. 

The transputer [Whi85] is one of several 32-bit VLSI processors that 
have been specifically designed for use in concurrent message-passing sys­
tems. The conceptual structure of the transputer (see figure 8.2) contains 
the three essential ingredients for a self-contained element of a message­
passing system, notably processor, local memory and communications. The 
general philosophy of the transputer is one of providing a family of compat­
ible components which are able to communicate with the minimum of ex­
ternallogic, irrespective of their individual internal dock rates. To this end 
individual transputers communicate via point-to-point links, implemented 
using an asynchronous bit-serial protocol. Each transputer has a fixed 
number of such bi-directional links, nominally four, and hence any pro­
cessor inter-connection network of fixed degree i (i ::; 4) can be constructed 
from these devices. In transputer-based multiprocessors the serial commu­
nication links and their inter-connection topology together constitute the 
message transfer system. 

The architecture of the transputer is defined by reference to the pro-
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gramming language occam [INM84] (see section 9.1.2). Occam possesses 
the necessary language attributes for expressing algorithms in a manner 
suitable for distributed parallel processing on networks of transputers. It 
enables the whole computation to be expressed as a static coHection of pro­
cesses which operate concurrently and communicate through named chan­
nels. The placement of occam processes on to transputer processors is 
the explicit responsibility of the occam program, and processes would not 
normally be expected to migrate. The static structure of occam processes 
permits the transputer hardware to remain simple and uncomplicated. This 
means, for example, that the domain of each process is known at compile 
time and consequently hardware for segment based memory protection is 
not required. 

In the following sections we examine the implementation of the trans­
puter architecture and the influence which occam and concurrency have 
had on the design of the programming model and instruction set of the 
transputer. We then discuss the ways in which large transputer-based mul­
tiprocessors can be constructed, and examine an example system. 

8.2.1 Architecture of the T414 

Overview 

The T414 is a 32-bit microprocessor implement at ion of the general trans­
puter structure outlined in figure 8.2. It has 2 Kbytes of on-chip RAM 
and four standard INMOS full duplex, serial links. The block structure of 
the T414 can be seen from figure 8.3. The on-chip memory consists of 512 
32-bit words of 50 ns cyde-time static RAM. The fixed-point processor is 
capable of executing code at a peak rate of one 8-bit transputer instruction 
every 100 ns, when isssuing instructions held in the on-chip RAM. The ex­
ternal 32-bit memory interface is capable of addressing up to 4 Gbytes and 
has a peak data transfer rate of 25 Mbytes per second, equivalent to one 
32-bit word every three processor cydes. No external memory interfacing 
logic is required with the T414 since this is contained on-chip in the form 
of a programmable set of memory control signals. The T414 is thus able to 
provide refresh signals for a variety of dynamic memory devices, as weH as 
signals suitable for use as row and column address strobes. 

Each of the four links provides two occam channels, one in each direc­
tion, operating at frequency of 5, 10 or 20 Mbits/sec1. The data transfer 
protocol is word length independent enabling the T414 to interface to other 
devices in the transputer family which may have differing word lengths. 
The links operate autonomously, enabling the transmission and reception 
of messages to be overlapped with instruction processing. This is an im-

IThe standard link frequency is twice the input dock, or 10 Mbits/sec. 
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portant feature of the transputer , for it enables the performance-degrading 
effects of message-passing latency to be transparent to the processor. Of 
course this can only be achieved when there are sufficient parallel processes. 
The T414 also contains a timer which permits occam programs to perform 
real-time functions. For example, the current process can be delayed until 
the timer reaches a certain value. 

The T414 contains approximately 150,000 transistors fabricated in a 
1.5 micron twin-tub CMOS process, and dissipates less than 500 mW. The 
device accepts a dock signal of 5 MHz, from wh ich it generates its own 
internal processor dock. 

Instruction set architecture 

Instruction set architecture (ISA) encompasses both the programming model 
(or user's view) and the architectural constructs required to support that 
model in hardware. The design of an instruction set architecture intended 
for use in concurrent systems will be influenced heavily by the need to sup­
port concurrency and communication, so one must first consider the major 
influences which were brought to bear during the design of the transputer. 
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Of the many influences on the design of the ISA for the transputer, the 
following five are of particular importance. 

1. There should be hardware support for concurrency, and in particular 
for inter-process communication and process management. 

2. Object code should be word length independent to permit the inte­
gration of a variety of devices within the transputer family. 

3. Source code should run unchanged between transputer networks of 
differing sizes. 

4. Occam is the lowest semantic level that any programmer should need 
to see, and hence the instruction set can be optimised to give preju­
dicial support to occam. 

5. Occam processes and procedures are declared statically, and therefore 
process workspaces can be allocated statically and do not need run­
time memory protection. 

Programming model 

The programming model of the transputer is extremely simple, in keeping 
with the occam philosophy, and effectively implements a stack architecture. 
The entire state of the currently active process consists of just six machine 
registers, plus the code and workspace for that process. This is illustrated 
in figure 8.4. 

Due to the non-recursive nature of occam the depth of stack required 
to evaluate an arbitrary expression can be computed at compile-time, and 
temporary variable space within the workspace can be allocated accordingly. 
The three registers Areg, Breg and Creg together constitute the top three 
locations of an evaluation stack. The Wptr register is used as a base from 
which alllocal variables belonging to a process can be addressed. The Iptr 
register addresses the next sequential instruction to be executed by the 
current process. The Oreg register is used to build word length values from 
word length independent instructions, the precise functioning of wh ich is 
discussed shortly. 

When the current occam process is not in the process of evaluating an 
expression only the Wptr and Iptr registers contain volatile process context. 
This simple arrangement of internal architecture means that scheduling and 
de-scheduling processes at such positions can be extremely fast. 

Instruction format 

The instruction format of the transputer is optimised for minimum static 
and dynamic code space requirements. It comprises a single 8-bit instruction 
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format partitioned as two 4-bit fields representing function and operand, as 
shown in figure 8.5. Thirteen of the sixteen functions encode the most pop­
ular transputer instructions directly. These include instructions for loading 
variables on to the evaluation stack, storing values back to memory, adding 
constant values to the top of stack value, and performing certain control 
transfer operations. Table 8.1 outlines these direct functions. 

All instructions place the contents of their 4-bit operand field in the least 
significant four bits of the operand register (Oreg). Oreg is then used as the 
operand for the function specified by the function field. All instructions 
except pfix and nfix clear Oreg upon completion of their function. The pfix 
and nfix instructions differ from the rest in that they shift Oreg four places 
to the left before inserting their data. The nfix instruction additionally 
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Table 8.1 transputer instruction set - direct functions 

function number of 
code mnemonic cycles description 

2 pfix 1 prefix 

6 nfix 1 negative prefix 

F opr operate 

4 lde 1 load eonstant 

7 ldl 2 load loeal 

D stl 1 store loeal 

1 ldlp 1 load loeal ptr 

8 ade 1 add eonstant 

C eqc 2 equals eonstant 

0 j 3 jump 

A ej 4(2} eonditional jump (untaken) 

3 ldnl 2 load non-Ioeal 
E stnl 2 store non-Ioeal 
5 ldnlp 1 load non-Ioeal ptr 

9 call 7 eall 
B ajw 1 adjust workspaee 

negates Oreg prior to the shift. Any literal value between MostNeg (10 ... 0) 
and MostPos (01. .. 1) can be loaded in to Oreg by using a sequence of such 
prefix instructions. It is primarily this aspect of the transputer instruction 
set, together with the memory addressing convention, which makes the 
transputer word length independent. 

The opr instruction implements a call on a microcode routine identified 
by the contents of Oreg. This greatly extends the range of possible instruc­
tion codes in the transputer, resulting in a total of over 100 instructions2 • 

Naturally the encoding of the indirect functions is chosen so that the most 
frequently used of these functions can be specified without resorting to pfix 
or nfix instructions. 

2From the large number of instructions, and the multi-eyde mode of exeeution, one 
eould reasonably infer that the tranaputer ia not a true Rlse a.rchitecture. 
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Memory organisation 

The 4 Gbytes of memory addressable by the transputer is organised as a 
single linear address space. This memory is byte addressable through the use 
of pointers, consisting of a word address concatenated with a byte pointer 
(figure 8.6). Only if the number of bytes per word is apower of two can 
ordinary arithmetic be performed on pointer values. The on-chip memory 
and the external memory are both integrated within the same address space. 

Process scheduling 

In an architecture optimised for the concurrent processing of a set of pro­
cesses on an arbitrary number of processors there is a fair probability that 
each processor will be required to manage more than one process. As we 
saw in chapter 6, each communication event will cause at least one process 
to become un-runnable, necessitating a context switch in at least one pro­
cessor. In order to maintain a balanced architecture the time taken for a 
processor to swap contexts should be a small fraction of the average pro­
cess grain-time. Looked at another way, a processor with a lengthy context 
switching time can only support correspondingly large grain-times for a 
given granular efficiency. It is this consideration which led to the adoption 
of hardware support for process management and context switching in the 
transputer . 

At the heart of the transputer's process management functions is a pro­
cess scheduler held in microcode. The occam processes that it manages 
can be in one of two states, either active or inactive, and each state has 
a number of sub-states, as shown in figure 8.7. The active processes wait­
ing to be executed are automatically linked into one of two run-queues by 
the microcode of the instruction wh ich caused the suspension of process­
ing. These two queues implement two levels of priority in the scheduling 
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algorithm, and naturally the scheduler will choose to run a high priority 
process if one is runnable. Furthermore if a high priority process becomes 
runnable whilst a low priority process is executing, the low priority process 
is preempted and replaced by the high priority process. Switching to a high 
priority process takes slightly longer than switching from a high priority to 
a low priority process, or between two low priority processes, since there is 
a greater quantity of volatile context in the processor registers which must 
be saved. The list structures maintained by the transputer are illustrated 
in figure 8.8. 

Each transputer also maintains two timers, a low priority timer which 
increments every 64 JLS, and a high priority timer which increments every 
1 JLs. A single time-slice lasts for 1024 high priority time periods, and 
low priority processes are de-scheduled at the first suitable moment after 
two time-slices have been completed. High priority processes are never 
preempted. When a process is de-scheduled its Iptr is stored at location 
(Wptr-l) and the process is linked to the back of the relevant run-queue. 
When a process becomes halted as a result of a local channel 1/0 opera­
tion the process workspace pointer is simply placed in the word of memory 
allocated to the channel, effectively linking the waiting process to a single­
element list identified implicitly by the channel address. When a matching 
communication event occurs the microcode re-links the halted process to 
the appropriate run-queue3 . The transputer also provides instructions to 
initiate and terminate processes. 

3The least significant bit of the workspace pointer is always zero, and is therefore used 
to store the process priority. The priority then identifies the correct run-queue. 
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Performance 

The T414 transputer operates at a peak rate of one instruction executed 
per processor cycle, but this asymptotic limit is unlikely to be sustained in 
practice. There are several reasons for this, the most important being that 
many instructions take more than one cycle, as indicated in table 8.1. Fixed­
point arithmetic instruction times are shown in table 8.2, clearly indicating 
the effect on performance of the interative (microcoded) multiply and divide 
instructions. 

If the occam code is held in on-chip memory four instructions can be 
fetched every SOns. However, if the code is stared externally then the pro­
cessor may incur additional cycles during instruction fetching. The extent 
of this delay is determined by e, the number of extra cycles required far ex­
ternal memory references. If e is less than 4 then, assuming that there are 
na control transfers, each extern al cycle takes less time than the execution 
of the instructions fetched and there will be no additional delay. If e ~ 4 
then a delay of at least (e - 3)/4 will be incurred. Contral transfers will of 
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Table 8.2 T414 fixed-point timings 

operation 

add 
subtract 
multiply 
divide 

processor cycle times 

1 
1 

38 

39 
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course make the average delay Ion ger than this, since so me fetches will not 
result in the execution of all four instructions. 

Context switching times 

Perhaps one of the most impressive features of the transputer is the speed 
with which it can swap processes when a communication event causes a 
hold-up. When a high priority process is suspended, and there are no 
further high priority processes to schedule, a low priority process can be 
scheduled in just 17 processor cydes·. Interrupting a low priority process to 
schedule a high priority process entails preserving the evaluation stack, and 
consequently takes a maximum of 58 processor cydes. Switching between 
two low priority processes only occurs at specific points in the microcode 
where it is known that the evaluation stack is empty, and again this takes 
only a small number of cydes. 

Communication performance 

Communication between two processes that are co-resident (on the same 
transputer) occurs via single words of memory. The communication proto­
col involves inspecting the channel location to ascertain whether a partner 
process is already waiting to communicate. This results in either the cur­
rent process being de-scheduled or the waiting process being linked to the 
relevant run-queue. By implementing both the communication primitives 
and the process scheduler in microcode, communication incurs a relatively 
small overhearl. 

Communication between two processes that reside on adjacent pro ces­
sors takes place via an INMOS seriallink, normally operating at 10 MHz. 
Messages are transmitted as a sequence of data packets, each of which must 
be acknowledged by an acknowledge packet. The transmission protocol is 
asynchronous, enabling communicating transputers to be driven from dif­
ferent docks, and is implemented as a single wire for each occam channel. 
Each link consists of a pair of channels, one in each direction, and data 

4These timings assume that no memory references go off-chip. 
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packets for one direction are multiplexed with acknowledge packets for the 
other direction on the same wire. The link protocol can be seen in figure 8.9. 
Acknowledge packets are used both to signal reception of the data packets 
and maintain flow control. 

Transputer links are formed by cross-connecting the Linkln and Link­
Out signal of two standard links. Over physical distances of less than 300mm 
aseries terminating resistor of 56 n, in conjunction with 100 n impedance 
transmission lines, will maintain an adequate signal quality provided the 
total line delay is less than 0.4 bit-periods (nomina11y 40 ns). Since the 
link protocol is asynchronous the relative skew, caused typically by differ­
ent rising and falling edge times of the link signals (through signal buffers 
for example), must be kept within a elose tolerance. This has implications 
for configurable transputer arrays in which the connectivity of the links is 
determined by gating the link signals according to a predefined topology. 

8.2.2 The T800 floating point transputer 

In 1987 INMOS produced a second generation transputer, the T800. This 
is essentia11y identical to the T414 except for a larger on-chip memory and 
an on-chip floating-point unit. In addition, the link communication rate of 
the T800 can be set at 5, 10 or 20 Mbits/s, corresponding to peak data 
transmission rates of 670, 1250 and 2350 Kbytes/s respectively, when oper­
ating concurrently in both directions. Extra instructions are also provided 
to support floating point data types and to support graphics operations 
directly. 

The programming model of the T800 is only slightly more complex than 
that of the T414, as illustrated in figure 8.10. The floating-point unit ob­
tains a11 operands from a floating-point evaluation stack consisting of three 
registers AF, BF and CF. When a low priority process is interrupted in or-
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der to schedule a high priority process the contents of the floating-point 
evaluation stack are preserved in a duplicate set of floating-point registers 
to minimise interrupt latency. 

A form of parallelism similar to that found in the CDC 6600 and the 
IBM System/360 Model 91 occurs in the T800. The fixed and floating-point 
units operate independently and so a limited amount of implicit overlap of 
instructions within a single instruction stream can occur. Synchronisation 
between the fixed and floating-point units occurs when data is moved in or 
out of the floating-point unit. This permits address (integer) calculations 
to proceed in parallel with floating-point value calculations. 

The floating-point ALU is microcoded, and uses a three-bit cyclic multi­
plication algorithm and a two-bit cyclic division algorithm [Gos80], resulting 
in the floating-point operation times shown in table 8.3. These operation 
times produce benchmarked performance [INM] of 4000 K Whetstones per 
second for single length arithmetic on 20 MHz devices. 

The temptation to construct very large multiprocessor systems from 
such high performance microprocessors as the T800 is irresistiblej a simple 
calculation indicates that 1000 T800 transputers operating at 30 MHz have 
a peak aggregate floating point execution rate of 2.25 GFLOPS (2.25 X 109). 

However, both the T414 and the TaOO transputers can only be connected 
together using network topologies of fixed degree (::; 4) so the task of linking 
large numbers of transputers to form a general-purpose structure, suitable 
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Table 8.9 T800 floating-point timings 

operation processor cycle times 
single length double length 

~d 7 7 
subtract 
multiply 
divide 

7 
13 
19 

7 
21 
34 

for a wide variety of applications, could present problems5 . 

8.2.3 Constructing multi-transputer systems 

Given that the limiting factor on the possible topology of transputer net­
works is the four point-to-point links on each transputer, it is worth consid­
ering the range ofregular networks that can be constructed with degree four. 
Perhaps the most obvious topology is the two-dimensional mesh which, de­
pending on the edge connections, can be extended to either a cylinder or 
torus (see the DAP interconnection structure on page 55). A fully connected 
torus will have problems communicating with the outside world, however, 
since every available link will be in use. 

If processes in non-adjacent transputers wish to communicate they must 
do so via intermediate processors, which must themselves be programmed 
to perform message routing since the link protocol does not support store­
and-forward directly. The number of links traversed by a message in transit 
between an arbitrary pair of processors is referred to as the path length, and 
in a two-dimensional mesh this is exactly 2{n1/ 2 -1) hops for an n processor 
system. In general, for a k dimensional square mesh, the upper bound on 
path length is k{n 1/ k - 1) hops. 

It would appear at first glance that a square mesh in three dimensions 
cannot be constructed from processors with just four links, as each node in 
a three-dimensional (3D) mesh must have at least six links (up, down, left, 
right, back and front). However, a chain of exactly two transputers has six 
spare links, and can therefore be used to implement a single Ilode in a 3D 
square mesh. Such a square mesh has a maximum path length of exactly 
4 (~)1/3 - 2 hops. 

Near-neighbour mesh topologies are very efficient for algorithms with 
predominantly local communication patterns, but for algorithms with little 

6 As feature sizes reduce, the amount of logic which can be put in a single chip will 
increase. Subsequent generations of the transputer are likely to exploit the extra area by 
incorporating more links, more memory and p08sibly more floating-point units. Note that 
with a eix-link transputer a 64-processor binary k-cube architecture could be constructed 
directly. 
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communication locality an upper bound distance between processors that is 
better than O(n1/ 3 ) may be required. In chapter 3 (sec ti on 3.3.1) the binary 
k-cube network was shown to have a maximum path length of k = pog2 n 1, 
and this is less than 4 (j) 1/3 - 2 for a11 values of n for which a perfect square 
3D mesh can be constructed. Clearly cubes of dimension one, two, three and 
four can be constructed from transputers, but k-cubes with k > 4 cannot 
be constructed directly. Instead, a network known as the cube-connected 
cycle can be used to model the binary k-cube, where nodes have degree 
whieh is logarithmie in n, from proeessing elements which actua11y have a 
fixed degree. Each node in the k-cube is eonstructed from a ring (or eyde) 
of c = k/2 transputers (c > 2). A network eontaining 22c nodes is henee 
created with a maximum path length between any two nodes of 2c. Within 
anode the maximum distance between any pair of transputers is c/2, and 
this routing distanee may be ineurred at any node visited on a path between 
an arbitrary pair of nodes. Consequently, the maximum distance between 
any pair of transputers is limited to c2 hops, whieh means that the upper 
bound on path length is O(log2 n). This is a graph-theoretic distance, and 
is not directly related to the physical wire lengths. In practice the 300mm 
limit on transputer link lengths pi aces astriet upper bound on the size of 
system that can actually be eonstructed using k-cube topologies without 
using reeonstituted link protocols. 

Another topology which has fixed degree and logarithmic path length, 
but which has wire lengths which grow more slowly, is the ternary tree. A 
binary tree comprises nodes with links to two offspring nodes and a parent 
node. A ternary tree is a simple extension to this whieh makes use of a11 
four links on a transputer by having three offspring nodes instead of two. At 
the leaves of the tree there will be a large number of uneonnected links, and 
these could be used for 1/0 or to link two trees (of similar depth) together. 
The maximum path length of a ternary tree is simply twiee the depth of 
the tree, and is therefore 2pog3(2n + 1) - 11, whieh is O(log n). 

An alternative to having one of the above fixed topologies is to have a 
configurable array of transputers from whieh any of the previously deseribed 
networks can be constructed. The logical structure of such an architecture 
is depicted in figure 8.11 and essentially consists of n transputers and a 4n­
input to 4n-output fu11 permutation network. Assuming one could build a 
fu11 permutation network for the required value of n, it would then be possi­
ble to configure an n! possible permutations of link connections. Computing 
the configuration control signals has been shown to take O(nlogn) time6 , 

but since the number of permutations that is likely to be of real interest is 
only a small proportion of the total number of possible permutations the 

6 A parallel algorithm for calculating permutation descriptors in O(log' n) time also 
exists [OT68]. 
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power of a fuH permutation network is unlikely to be required in practice. 
Several research designs for configurable transputer systems have been 

produced and these include the ESPRIT Supern ode project for which the 
T800 was originaHy developed, the Alvey ParSiFal project and the IBM 
VICTOR machine [WBB*87]. The primary goals of these projects is to 
produce transputer systems capable of being configured as one of a number 
of important topologies, and particularly in the case of the VICTOR ma­
chine to be partitionable into a number of distinct networks. These are also 
the goals of the Meiko Computing Surface, arecent commercial product 
based on transputer technology. 

8.2.4 The Meiko Computing Surface 

The Meiko Computing Surface was first demonstrated in July 1985 at the 
SIGRAPH Conference in San Francisco, and became commercially available 
in the third quarter of 1986. It is a modular and expandable system organ­
ised as a reconfigurable array of transputer-based computing elements, 1/0 
elements, and storage elements. These elements are supported by a library 
of circuit boards, each optimised for a specific function. 

A Computing Surface consists of a number of Modules each containing 
up to 40 boards housed in two 19-inch racks. All inter-board links within a 
Module are routed via the System backplane, and links between Modules are 
provided by special inter-Module link boards. There is no theoreticallimit 
on the number of Modules, and hence transputers, that can be contained in 
a Computing Surface, although the upper bound on the inter-Module link 
wire length ultimately constrains the configurations which can be extended 
indefinitely. Modules contain a private power supply and use forced-air 
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cooling, dissipating up to 3.1 kW each. The structure of the Computing 
Surface is illustrated in figure 8.12. 

The system back plane in each Module supports a Supervisor bus as well 
as the link connectivity, and this provides for low bandwidth communica­
tion between all computing elements in the system. It has a single Bus 
Master, which is nominally a Local Host board, and is capable of resetting 
and examining the internal state of all transputers, reporting errors, and 
configuring the link connectivity. Application software can also use the Su­
pervisor bus as a communication pathway, and this could be particularly 
useful for transmitting debugging information. 

The board library 

The boards in the library supported by the Computing Surface each contain 
one or more computing elements, a supervisor bus interface, a link network 
interface and optionally some specific 1/0 function. Each computing el­
ement consists of a single transputer (either a T414B or a T800) and a 
certain amount of extern al private memory. The link network interface 
is supported by custom VLSI circuit switches, although the network con­
nectivity can also be configured manually using polarised jumper cables. 
Special purpose 1/0 boards, such as graphics display elements, are pro­
vided as part of the system rather than as peripherals in order to provide 
an integrated programming environment for both the computing and 1/0 
sections of an application. 

Local Host board 

The Local Host board consists of one transputer ,3Mbytes of RAM with 
error detection logic, 128 Kbytes of EPROM, an IEEE-488 bus controller, 
a Supervisor bus interface, two RS-232 asynchronous serial communication 
ports and a link network interface. At least one Local Host is required in 
each Computing Surface Module. It is responsible for monitoring hardware 
and software errors, controlling the reset and post-mortem analysis of the 
other transputers in its Module, and configuring the link routing switches. 

Quad Computing Element board 

The computing power of the Computing Surface derives from the massive 
replication of transputers, each with a significant amount of private off-chip 
memory. These transputers are located in groups of four on Quad Com­
puting Element (QCE) boards. Each processor on a QCE board contains 
either 256 K, 1 M, 2 M or 4 Mbytes of error-checked RAM, a Supervisor 
bus interface, and a link network interface. Each QCE has a maximum con­
nectivity requirement of up to sixteen INMOS links (two wires per link), 
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although the placement of logical processors on physical processors max­
imises the locality of link configuration within a board in order to minimise 
the usage of backplane routing. 

Display Element board 

Computer graphics is an application where significant computing power is 
often required. In addition, many computationally intensive applications 
produce results which are best displayed pictorially. To support these ap­
plications the Computing Surface provides a Display Element board which 
consists of a single transputer , a Supervisor interface, a link network inter­
face, 128 Kbytes of static RAM and a display controller with a 1.5 Mbyte 
frame buffer. 

A1ass Store board 

The interfacing of Computing Surface Modules to extern al 1/0 devices, 
such as disk drives, is performed by the Mass Store (MS) boards. Each MS 
board contains a single transputer with its Supervisor bus and link network 
interface, plus 8 Mbytes of RAM and a 3 Mbyte/s DMA SCSI interface. 
Multiple MS boards can be configured in a system, permitting very high 
aggregate 1/0 bandwidths to be achieved. 

Inter-A1odule Link board 

The limitations on the physical length of standard INMOS links me ans 
that links between Modules must be supported in some other way. This 
is achieved by providing special Inter-Module Link boards, each of which 
provides sixteen hardened links that can be connected to any other Inter­
Module Link board in the system (normally in a different Module). These 
hardened links are implemented using differential ECL drivers, and can 
operate over distances of up to twenty feet. The sixteen hardened link 
interfaces are connected to a link network interface which allows them to 
be allocated to the transputers within their local Module via the backplane 
routing resource. The Supervisor buses in adjacent Modules can also be 
connected via the Inter-Module Link board to enable a single Master to 
configure a multi-Module system. 

Data Port board 

Certain types of 1/0 device are supported directly in transputer technology, 
for example the IMS M212 is a 16-bit transputer with an on-chip disk inter­
face. Special purpose 1/0 devices, or devices which require very high data 
transfer rates, are not supported directly in silicon. The Computing Surface 
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board library therefore contains a board which provides a mechanism for 
interfacing such devices. 

A Oata Port board comprises two data port elements. Each element 
consists of a single transputer, with the usual link network interface and 
Supervisor bus interface, 0.5 Mbytes of 20 Mbyte/s dual-ported memory, 
and an 1/0 interface controller. The link to a special-purpose 1/0 device is 
implemented via an 80 Mbyte/s 32-bit common bus located on the Module 
backplane. Each 1/0 controller manages OMA transfers in or out of the 
dual-ported memory in parallel with normal processing in the transputer. 
The common 1/0 bus consists of a 32-bit data pathway, together with some 
control and signals, and has a peak bandwidth of one word every 100 ns. 

Effectively the 1/0 bus acts rather like a 32-bit link, except that multiple 
destination processors can receive the same data simultaneously. The data 
port elements would normally communicate with special purpose boards 
such as frame grabbers, graphics output devices, multiple head disk sub­
systems, or possibly high bandwidth channels to other processing equip­
ment. 

Link Network Structure 

Ideally there should be a complete connectivity between all transputer links 
in a configurable transputer array. In practice, however, implementing this 
is firstly very costly and secondly not extensible. One could, for example, 
use a Bene!! network (see section 3.3.3) or a switch similar to the Mem­
phis switch of the IBM GFll, but the logic required to implement these 
switching functions is not linearly proportional to the number of connected 
ports and therefore could not be accommodated on the computing element 
boards. The routing method chosen for the Computing Surface involves two 
components in each Module; the backplane routing resource, and the link 
network interface chips. A manually configured system does not require the 
link network interface chips, and is adequate for systems with a fixed or 
infrequently changing topology. 

A Computing Surface Module fully populated with Quad Computing 
Elements can contain as many as 160 transputers, each of which has four 
bi-directionallinks. In order to be able to connect every possible set of links 
one would require a backplane routing resource with at least 1280 signals. 
This is beyond the limits of current packaging technology, and so a restricted 
routing resource is provided. The precise details of the capabilities and 
limitations of this restricted routing resource are not in the public domain, 
although the manufacturers claim not to have found a network of degree 
four which cannot be mapped on to the available routing resource. 

The link network interface chips are full custom CMOS devices which 
essentially contain a cross-bar switch. They permit connections between 
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the links on a board and the backplane routing resource to be set up under 
control of the Supervisor bus. Up to four of these 84-pin packages can be 
accommodated on each Quad Computing Element board. By allocating 
the user's virtual processors to the processors of the physical processors 
statically, it is possible to place them so as to maximise the connectivity 
of processors which are on the same board, thus minimising the backplane 
routing resource requirements. 

8.3 Hypercube multiprocessors 

When a message-passing processor supports a small number of point-to­
point links, statically configurable architectures with store and forward­
ing capability (whether in software or hardware), such as the Computing 
Surface, are the norm. Such architectures can be configured so that the 
maximum path length varies from O(n1/ 2) to O(logn). However, message­
passing processing elements which have at least log2 n point-to-point links 
can be used to construct a binary k-cube networkj a network known for its 
high connectivity and O(log n) path length. 

Much of the original work on hypercube architectures7 was done at 
Caltech by Seitz [Sei85,Sei83] (see also [SB77]), and from there the concept 
of a cube-connected ensemble of message-passing processing elements was 
taken up by Intel and a number of start-up companies most notably in the 
USA. 

8.3.1 Cosmic Cube and the Intel iPSC 

The Cosmic Cube [Sei85] is an experimental MIMD machine which dates 
from around 1980. It consists of 64 processing nodes connected in a bi­
nary 6-cube. Each node has a level of hardware complexity that could 
be integrated in a single chip using 1 micron feature size technology. The 
processing element comprises an Intel 8086 with an 8087 floating-point co­
processor, 128 Kbytes of parity-checked RAM, 8 Kbytes of boot ROM, and 
six fuH-duplex asynchronous communication channels each operating at 2 
Mbits/s. The Cosmic cube is very much an experimental machine, although 
benchmarks on a restricted class ofphysics related problems indicated a per­
formance roughly ten times that of a VAX 11/780 and something less than 
I/10th that of a CRAY-I. 

The Intel Personal Scientific Computer (iPSC) is a commercial deriva­
tive of the Cosmic cube architecture, and systems containing up to 128 
processors (7-cube) can be configured. Each node in the iPSC is an in­
dependent single-board computer containing an Intel 80286 processor with 

7The terms hypercube, boo/ean k-cube and binary k-cube are essentially interchangeable. 
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an 80287 floating-point coprocessor, 512 Kbytes of RAM and 64 Kbytes of 
boot ROM. Within each node there are eight serial communication channels 
implemented using eight Intel 82586 communication coprocessors (normally 
used in Ethernet interfaces). The software overhead for message-passing, 
wh ich naturally entails a certain amount of control processing, is such that 
transmitting a zero length message takes roughly 120 J.lS. This highlights one 
of the major problems of implementing MIMD systems with conventional 
microprocessors, they do not support equally all features of the abstract 
machine seen by the user. For example, atomic operations such as ADD 
and COMPARE are supported directly in hardware but communication 
operations such as SEND and RECEIVE are not, and must therefore be 
simulated. 

The Inmos transputer does not suffer from this simulation overhead, 
nor does it require half a circuit board of logic per processor to implement 
a memory interface as in the BBN Butterfly, although the four link re­
striction currently rules out cube-connected transputer arrays. The second 
generation iPSC incorporates hardware mechanisms to improve the latency 
of message passing by introducing a circuit-switched protocol for long mes­
sages. This uses a message he ader to set up a hardware switch at each 
node it traverses, after which the body of the message is streamed through 
without software intervention. This improves the latency of a zero length 
message between nearest neighbours by about a factor of three [ISC87]. 

8.3.2 The NCUBE/IO 

In November 1985 a startup company called NCube Corp. announced the 
availability of the the NCUBE/lO, a custom VLSI implementation of the 
Cosmic cube style of architecture [JRW86]. The NCUBE/I0 contains from 
16 to 1024 processors organised from a 4-cube to a 100cube network. Each 
NCUBE processor is contained in a single 160,000-transistor HMOS chip 
fabricated using a 2.5 micron minimum feature size process. A processing 
element consists of just seven chips; a processor plus six 256K x 1 dynamic 
RAM chips. 

The architecture of the NCUBE processor is similar in many respects 
to the T800, except for the presence of eleven links rather than four. In­
ternally the NCUBE processor contains a 32-bit integer ALU with shifter, 
16 general-purpose registers, 13 special-purpose registers, a 64-bit IEEE 
standard floating-point unit, an instruction cache, a memory interface and 
eleven bi-directional serial channels. The extra link on each processor is 
used to support distributed 1/0. 

The processor is organised as a four-stage pipeline and is able to execute 
simple register-to-register instructions at a peak rate of one every 200 ns. 
Unconditional branch instructions (branching within the cache) take 500 ns 
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and conditional branches take 600 ns. However, the floating-point perfor­
mance of the NCUBE is at most 0.5 MFLOPS per processor compared with 
1.5 MFLOPS for a 20 MHz IMS T800. 

Perhaps the most impressive feature of the NCUBE is its physically 
compact construction. The small amount of memory in each processing 
element means that 64 processing elements can be accommodated on a 
single printed circuit board and hence 1024 elements are contained in a 
single rack on just 16 boards. Consequently all communication signals are 
less than 24 inches long. 

8.3.3 The FPS T series 

In an attempt to combine the power of the transputer with the connectivity 
of the binary k-cube, Floating Point Systems designed a transputer-based 
system, containing additional communication logic, capable of being con­
figured as a 14-cube. Each processing element contains a single transputer 
together with a pipelined vector coprocessor and 1 Mbyte of memory. The 
peak performance of each node is 16 MFLOPS, and hence the peak per­
formance of a fuH 14-cube would be 0.26 TFLOPS (Tera-FLOPS, or 1012 

FLOPS). However, the size and power consumption would be somewhat 
large, and to quote Lloyd Turner (president of FPS) [Mok86] 

"If the customer has an application for the T /40000, we'H 
provide the building." 

8.4 Sununary 

Message-passing multiprocessors do not suffer from the problem of access 
conte nt ion found in shared-memory systems, and thus the parallelism of 
message-passing architectures is not restricted. However, several problems 
do exists. For example, distributing the load of m parallel processes across n 
physical processors (where m > n) is not a simple task. If the load is badly 
distributed the system will have the performance characteristics of a single 
processor. There is also the problem of debugging a system of distributed 
processes in which the me ans of access to variables within each process is 
through a network of processors, some of wh ich may be in an unknown state. 
Finally, the cost of communicating between processors in a message-passing 
system is usually much greater than in a shared-memory environment, and 
this means that fine-grained computations cannot be supported efficienctly. 
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9 Multiprocessor Software 

In the quest for high performance single processor architectures, software 
is important, but does not playa critical röle. By this we mean that the 
languages and algorithms designed for one generation of high performance 
architectures can often be inherited by a subsequent generation since the 
architectural model remains sequential, and any changes can usually be hid­
den from the application. Certain machines augment the sequential model 
by introducing data-parallel operations, for example vector processors such 
as the CRAY-1 and the CYBER 205. These machines require vectorising 
compilers in order to mask their augmented model of computation from the 
application code, but processing is otherwise similar. 

In the quest for high performance multiprocessor systems, however, soft­
ware is arguably a more critical component than hardware. The reason 
for this is that the exploitation of parallelism in multiprocessors normally 
requires the application parallelism to be specified explicitly by the pro­
grammer in the form of a number of independent streams of instructions. 
Conventional languages are incapable of expressing programs in this form, 
and even if they were, conventional algorithms are not tailored to exploit 
this form of parallelism. The exploitation of multiprocessor architectures 
therefore requires not only efficient inter-processor communication hard­
ware, but new algorithms and new languages. 

In chapters 7 and 8 we discussed the arehiteeture of shared-memory and 
message-passing multiproeessors respectively. These two broad classes of 
architeeture define a diehotomy of programming languages and algorithms, 
eaeh suited to one or other class of machine. This is only true for reasons of 
efficieney, since a message-passing machine ean be programmed to simulate 
a shared-memory machine, and vice versa. 

In this chapter we introduee briefty two representative languages which 
have been devised for multiprocessor systems, and then discuss two case 
studies in the design of parallel algorithms for multiprocessors. 

9.1 Languages for multiprocessors 

Shared-memory architectures lend themselves to software environments in 
whieh variables ean be aeeessed by a number of processors operating eoneur­
rently, and it is through these shared variables that process communication 
takes plaee. Conversely, message-passing arehiteetures lend themselves to 

169 
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software environments in which processors (and hence user processes) rilay 
only access purely local variables, with communication occuring via the 
explicit sending and receiving of inter-process messages. 

In the following sections we ex amine the ways in which the two languages 
Ada and occam support parallel processing, looking in particular at how 
they describe paralleIism and at their mechanisms for coordinating parallel 
activities. 

9.1.1 Ada 

In the search for a language suitable for programming embedded systems 
which have long life-cycles, and therefore a strong need for maintainability, 
the V.S. Department of Defense established a Higher Order Language work­
ing group in 1975. Several proposals for a new language were evaluated, 
and in May 1979 a language from Honeywell Bull in France was chosen. By 
1982 an ANSI Standard for the new language had been established (ANSI 
MIL-STD-1815). The new language was named after Augusta Ada, Count­
ess of Lovelace (1815-1852), who worked with Charles Babbage and is often 
considered to have been the first computer programmer. 

Embedded systems typically comprise a number of closely cooperating 
parallel tasks. Before the advent of Ada, many hardware systems had 
been constructed for this purpose, but languages suitable for expressing 
the cooperation between tasks were not widely available. Consequently, 
software development was ad hoc, and much effort was wasted in producing 
software packages which were similar in many respects but which relied on 
incompatible languages and systems. The primary goals of Ada were to 
improve programmer productivity and software port ability, and although 
the language contains many diverse features it is the support for declaring 
concurrent tasks, and communicating between them, which is of relevance 
to this text. 

Much of the syntax of Ada is reminiscent of Pascal, with the ma­
jor difference being the support for modular programs and multi-tasking. 
Declarations appear at the head of each program module, defining types, 
variables and subprograms (procedures and functions). These declarations 
are of two types. Those declared in the implementation part of a module, or 
in the private part of the module specification, are local to that module and 
cannot be accessed from another module. However, those declared in the 
public part of a module are visible from outside that module. Each module 
has an associated identifier, which is visible throughout the context of the 
module decIaration, and this identifier can be used to prefix the names of 
local objects when accessed from a different module. 

There are two types of module in Ada: the package and the task. Ada 
programs can be partitioned into packages for the pur pose of introducing 
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high level structure. Thus, for example, a group of subprogram unit~ (such 
as numerical routines) can be grouped together in a package, and this not 
only makes the resulting program easier to read but makes the packaßed 
subprograms reusable. The essential idea behind packages is to disassociate 
the definition of a logical entity from the parts of a program in which it 
is referenced. Packages containing only declarations are permitted, and so 
groups of variables accessed from a number of subprogram units (or con­
current tasks) can be placed in a package for the sake of clarity. Packages 
can be thought of simply as a textual convenience, permitting the program­
mer to structure a large piece of software without really introducing any 
additional computational features. 

The second type of module is the task, and this is of much greater sig­
nificance to the computer architect since it is the sole means of introducing 
parallelism into an Ada program. In Ada, every task is defined within the 
declarative part of an enclosing program unit. This enclosing program unit 
is referred to as the parent unit, and it is involved implicitly in the initiation 
and termination of its enclosed sub-tasks. Here is a smaIl example of a task 
definition; as is the case with aIl program units, it comprises a specification 
part and a body. 

THE_PARENT: 
declare - - parent's declarations 

time: natural; 
errorJiag : boolean; 
task WATCHDOG; - - task speciflcation; 

task body WATCHDOG is 
- - this is the body of the task 
loop 

time := time + 1.0; 
ü errorJiag then 

PUT("Error detected at T = "); 
PUT(time,5); 
NEW_LINE; 

end ü; 
end loop; 

end WATCHDOG; 

begin 
- - here is the hody of the parent unit 
end THE_PARENT; 

A fundamental notion in Ada is that all tasks declared within the declara-
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tion part of a program unit begin exeeuting, in parallel, from the moment 
the parent unit begins exeeuting. The eonditions for termintation of a 
parent task ean be defined reeursively as the eonjunetion of the termina­
tion of all sibling tasks with the termination of the parent body. Henee, 
sinee sibling tasks may themselves have furt her sibling tasks declared within 
them, all such nested tasks must terminate before the parent ean terminate. 
The trivial example shown above will therefore never terminate sinee the 
WATCHDOG task loops indefinitely. 

It is also possible to declare a task type, and this is a eonvenient way to 
ereate multiple instanees of the same task whieh are to run in parallel. For 
example, one eould simulate the behaviour of an ICL DAP processing ele­
ment as a single task which could then be replicated 4096 times to simulate 
the behaviour of a eomplete array. This eould be written as 

task type DAP _PE Is 
entry EXECUTE_INSTRUCTION(inst : in inst_pareel}; 

end DAP_PE; 

task body DAP _PE is 
loop 

accept EXECUTE_INSTRUCTION(inst : in inst_parcel} do 
- - simulate one loeal instruction 

end accept; 
end loop; 

end DAP_PE; 

The following declaration will then ereate a 64 x 64 array of DAP _PE tasks. 

DAP : array(0 .. 63, 0 .. 63} of DAP _PE; 

The specifieation of the DAP _PE task type defines an entry point ealled 
EXECUTE_INSTRUCTION, and within the body of DAP_PE there is 
an aceompanying accept statement whieh defines the sequenee of aetions 
which must be obeyed when the task aceepts an entry at that entry point. 

When eaeh of the 4096 instanees of DAP _PE is started up they eontinue 
processing up to the accept statement, and then pause until another task 
initiates a rendezvous with that task at that entry point. This is achieved 
by exeeuting the following statement within a parallel task. 

DAP(x,y).EXECUTE_INSTRUCTION(the-instruetion} 
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In this statement, the EXECUTE_INSTRUCTION(the.instruction) part 
names the entry point and defines the parameter to be passed from the 
calling task to the called task during the rendezvous, and DAP(x,y) names 
the called task. The semantics of Ada stipulate that the calling process 
becomes suspended the moment it initiates a rendezvous, becoming active 
again only when the associated accept statements have been executed to 
completion. This is most important because it defines a mechanism for 
ensuring mutual exclusion. During a rendezvous between two tasks only 
the called task is active, and it is therefore safe for it to access data which 
are also operated on by the calling task. It is possible to write Ada pro­
grams in which tasks share data without enforcing exclusive access, since 
the scope rules of Ada permit data to be visible across the boundary of 
two parallel tasks, although under these circumstances the results of unsafe 
computations are undefined. 

Ada is therefore very much a language for tightly-coupled, shared­
memory multiprocessor architectures, typified by the Sequent Balance, the 
BBN Butterfly, and newer architectures such as the Motorola M88100 RISC 
processor. Ada can of course be implemented on a single processor machine, 
but this in itself cannot guarantee safe update of shared variables. 

One point which is worth noting about Ada tasks is their inherent asym­
metry. In particular, the calling task must name the called task explicitly, 
but the called task has no way of specifying with which task it will ren­
dezvous. This defines two categories of task: active and passive, in which 
active tasks call upon the services of passive tasks, and passive tasks pro­
vide these services by defining suitable entry points. It is important that 
the passive tasks do not have to name the task with which they rendezvous, 
since this enables them to provide a generic service to any or all of the tasks 
to which they are visible. 

Passive tasks also have the ability to express non-deterministic choice, 
whereby one of a number of possible entry points within a single passive 
task is a candidate for the next rendezvous. The choice of which entry 
point is selected depends on which entry point has an outstanding active 
task waiting to rendezvous. The following example of a simple first-in-first­
out queue illustrated this mechanism. 

task QUEUE-MANAGER is 
entry ENQUEUE(value : in queue.item); 
entry DEQUEUE(value : out queue.item); 

end QUEUE_MANAGER; 

task body QUEUE-MANAGER is 
queue : queue...structure; - - local declaration of queue 

begin 
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loop 
select 

when not empty(queue) => 

or 

accept DEQUEUE(value : out queue..i.tem) do 
- - remove item from queue 
- - assign item to value 

end DEQUEUE; 

when not full(queue) => 
accept ENQUEUE(value : in queue..i.tem) do 

- - insert value into queue 
end ENQUEUE; 

end select; 
end loop; 

end QUEUE_MANAGER; 

As one can see from this simple example, it is possible to speeify con­
ditions wh ich must be satisfied before an entry point beeomes a eandidate 
for selection, and this is a feature found also in the the non-deterministie 
choice construct of occam explained in section 9.1.2. 

Sinee only one task can rendezvous with the QUEUE_MANAGER at 
a time, this ensures exclusive aceess to the queue data-structure during 
queue operations. In order to schedule the rendezvous correetly there is a 
task wait queue associated with eaeh entry point, and aetive tasks whieh 
attempt to rendezvous with an entry point whieh is not ready to accept 
get placed in this queue. Ada supports a strietly FIFO scheduling poliey 
for queued rendezvous. Henee the implementation of the select statement 
simply requires the passive task to sean the task wait queues in seareh of a 
waiting active-task deseriptor. This of course requires a sequence of machine 
instructions to find a suitable task with which to rendezvous, followed by 
a sequence of instructions to schedule the halted task upon completion of 
the rendezvous. If we now refer back to the speedup model introduced in 
section 6.2, we can see that the first sequence of instructions represents 
the decision time associated with the rendezvous (the basic synchronisation 
event), and that the seeond sequence of instructions represents the context 
switching time. We may reasonably surmise that since these times will be 
long in comparision with the time to execute a single machine instruction 
(in most machines) few Ada systems will be able to support fine-grain 
computations efficiently. 
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9.1.2 Occam 

In many ways Ada is a complex language; it supports a sizeable number 
of syntactic structures and extensive data types. In extreme contrast to 
this we find occam, a language with a philosophy of 'keeping things sim­
pIe'. However, simplicity is just a syntactic convenience (or inconvenience, 
depending on one's point of view) , and the major conceptual difference be­
tween Ada and occam is that whilst in Ada data can be shared between 
tasks, in occam the same is not true. 

Occam is essentially a distributed processing language. In Ada data can 
be communicated through shared variables (although this is not intended to 
be the primary means of communication), and synchronisation is enforced 
via the rendezvous mechanism. However, in the case of occam, data can 
be communicated between processes only by explicitly sending a message 
from one process to the other via named channels. 

Occam programs are constructed from three primitive processes. These 
primitive processes perform assignment, input and output. For example, 

v : = e assign expression e to variable v 

c! e output expression e to occam channel c 
c? v input from occam channel c to variable v 

Each occam channel provides one-way communication between two concur­
rent processes. Synchronisation between processes is performed by the chan­
nel communication protocol which ensures that the communication event 
occurs only when both the receiving and the transmitting processes are 
ready to communicate. 

These primitive p!'ocesses can be combined to form meaningful pro grams 
using process constructors. For example, the most obvious way to construct 
a program fro~ a number of primitives is to execute them in sequence 
(in the same way that individual statements are assumed to execute in a 
conventional sequential programming language). There is an explicit SEQ 
constructor for expressing the sequential execution of processes, thus 

SEQ 
process.l 
process.2 

The natural dual of the SEQ construct is the PAR construct in which all 
component processes can be executed in parallel. Occam also supports a 
construct for choosing one of a number of alternative processes to execute. 
This ALT construct takes a list of guards, each with an associated process, 
and executes the process associated with the first satisfied guard. Each 
guard is a logical conjunction of a boolean expression and an (optional) 
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input primitive, similar in many respects to a select when statement in 
Ada. For example, one may write 

ALT 
(n > 0) t chan1 ? var1 

process.1 
(n < 0) chan2? var2 

process.2 

Conditional (IF) and iterative (WHILE) constructs are also provided, but 
since these are equivalent to similar constructs found in sequential program­
ming languages they are not discussed further . The constructs discussed 
above are also processes in their own right, and can be composed to form 
nested process-structures of arbitrary depth. 

If it is required that several copies of a single process be executed un­
der one of the SEQ, PAR or ALT scheduling disciplines a process replication 
constructor can be used. This performs an analogous function to the task 
type construct in Ada. The syntax of process replication requires the spec­
ification of an activation variable (i), and a lower bound and range for the 
possible values taken by the activation variable, thus 

SEQ i = 0 FOR n 
process.1 

or 

PAR i .. 0 FOR n 
process.1 

or 

ALT i = 0 FOR n 
process.1 

A replicated SEQ construct creates neopies of process.1 which are 
subsequently executed in sequence, terminating on completion of the n th 

proeess. A replicated PAR eonstruet again creates neopies of process.1, 
but may (if there are suffieient hardware resourees) exeeute them in par­
allel. The PAR eonstruet terminates when alt eomponent processes have 
terminated. A replicated ALT construet causes one of n vers ions of pro­
cess.1 to be created and executed, with the choice depending on the first 
of n guards to be satisfied. 

Replication can also be applied to communication channels to permit 
the declaration of vectors of channels, thus channels link [0] ... link [n-1] 
can be declared by writing: 
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[n]CHAN OF ANY link: 

An essentially unlimited number of channels can be declared provided they 
connect processes executing on the same transputer. However, the fixed 
number of inter-transputer links together with the direct mapping of one 
occam channel to one physical transputer link, me ans that only four chan­
nels are available for connecting processes which reside on adjacent trans­
puters. 

There is greater symmetry in occam channels than there is in Ada 
rendezvous, since in occam the communicating processes must both name 
a unique unidirectional channel in order to effect the transfer of a message. 
There is still some asymmetry in that only the receiving process can express 
non-deterninistic choice over the channel from which it is willing to accept 
a message. 

This summary of occam and its relation to the transputer is necessar­
ily brief, and serves only to highlight the language features which support 
concurrency. The interested reader should consult the occam Programming 
Manual [INM84], the occam 2 ReJerence Manual [INM88], or Brookes and 
Stewart [BS89] for more detailed tutorials on programming in occam. 

9.2 Multiprocessor algorithms 

This book is concerned primarily with the design and analysis of high per­
formance parallel computer architectures. However, since the design of any 
system is heavily infuenced by its intended use, it is appropriate to consider 
not only the hardware structures and programming language interface but 
also one or two representative application algorithms. The analysis of paral­
lel algorithms can yield useful information, particularly ab out the quantity 
and granularity of parallelism, and from this one can quantify the expected 
execution time for a particular input data size. By comparing this with the 
expected execution time of an equivalent sequential algorithm one obtains 
a value for the expected absolute speedup. These metrics can also be used 
in conjunction with system performance models, such as the one outlined 
in section 6.2 to predict speedup and efficiency. Results of these analyses 
indicate to the computer architect the areas in which the system as a whole 
is performing adequately and, more importantly, the areas in which it is 
not. 

In the following sections we investigate two multiprocessor algorithms: 
the first is intended for use in shared-memory systems supported by lan­
guages such as Ada, and the second is intended for use in distributed mem­
ory systems supported by languages like occam. 



www.manaraa.com

178 Architecture of High Performance Computers - Volume II 

9.2.1 Sorting on a shared-lllelllory architecture 

Sorting is an important activity in computing, and one which is often cited 
as a model problem for parallel machines. It has been shown that any 
sequential sorting algorithm based on pair-wise comparisons must have a 
time complexi ty of {1 (n log n). N umerous methods for red ucing this by 
using multiple processors have been devised, for example Batcher's bitonic 
merge algorithm [Bat68] sorts n items in 6(log2 n) time using a network of 
nlog2 n(log2 n + 1)/4 simple comparators. For a survey of parallel sorting 
algorithms the reader should consult [BDHM84]. 

In this section we consider the development of a simple parallel sorting 
algorithm, using the well-known sequential Quicksort algorithm as a basis 
from which to begin. In some ways one's choice of initial sequential algo­
rithm is influenced by the architecture of the multiprocessor system being 
used. For example, we know that in a shared-memory system a number 
of tasks can sort independent sections of a common data structure simul­
taneously. We mentioned earlier that an analysis of parallel algorithms 
should yield information which is useful to the designer of parallel archi­
tectures. This completes a circular argument, and serves to stress that the 
design of parallel algorithms is an iterative, and often an intuitive, process. 

The Quicksort algorithm is an efficient (internal) sequential sorting algo­
rithm which contains independent sub-computations, and thus has potential 
for parallel processing. The simplest variant of the Quicksort algorithm can 
be defined as folIows; 

1. Given an array K[/ ... u] of keys, partition the array such that the 
value originally at position K[/] is at position K[i], and all values 
ranked below K[i] are in locations I . .. i-I, and all values ranked at 
the same level or higher than K[i] are in locations i + 1 ... u 

2. If i-I> 2 then perform step 1 on the sub-array K[/ ... i-I] 

3. If u - i > 2 then perform step 1 on the sub-array K[i + 1 ... u] 

There are two points to note here: firstly, steps 2 and 3 both require 
step 1 to be completed before they can proceed. Secondly, steps 2 and 3 
are completely independent, and therefore can execute in parallel. This is 
an example of non-linear recursion, where each procedure (or task) creates 
more than one recursive (and independent) call on itself. Figure 9.1 shows 
the temporal relationships between a number of such calls. 

Let us now consider how this could be implemented on a shared-memory 
architecture using Ada. Following this we outline some techniques with 
which one can analyse the behaviour and performance of this algorithm. 
Since we are considering an implementation on a shared-memory architec­
ture no decomposition 01 data is required. However, we must partition the 
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parallelism -
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Q('2-1.·'l-1) 
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T .. 

Q(1.·'2- 1) 

time/l 

Figure 9.1 Idealized parallel deeomposition 0/ Quieksort, where Hk is the 
harmonie series given by 2::=1 i-I 

computation to define the unit of parallelism, and devise a scheme whereby 
the tasks can coordinate their activity. 

We have already identified the recursive calls to the Quicksort procedure 
as potential parallel tasks, and so let us define a task type which performs 
a Quicksort on a sub-array of unsorted keys given lower and upper bounds 
on array index defining the set of keys to be sorted. The Quicksort task 
operates by repeatedly executing a loop until it is told by the MANAGER 
that there is no more work. Within each loop a Quicksort task obtains a pair 
(l,u) from the MANAGER by executing a rendezvous with the MANAGER 
at the DISPATCH entry point. After this rendezvous (l,u) defines a range of 
keys which the task must take responsibility for sorting during that iteration 
of the loop. The condition for termination is if the MANAGER dispatches 
a pair (l,u) ror which l=u. If this is not the case then the sub-array must be 
partitioned according to the Quicksort method, and this can generate two 
further pairs (l,i-1) and (i+1,u) which each define a sub-range of the given 
sub-array which can be parallelised still further. These are entered into the 
queue of pairs by executing one rendezvous with the MANAGER for each 
valid pair, at the RECEIVE entry point. 
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task type QUICKSORTj 

task body QUICKSORT is 
i, I, u : integerj busy : booleanj 
- - any other local variables 

begin 
busy := truej 
while busy loop 

- - get some work from the MANAGER 
MANAGER.DISPATCH(I, u); 
- - test to see if sort is complete 
if 1= u then 

busy := false 
else 

- - Partition K[l...u] according to Quicksort algorithm, 
- - and let i be the position of the new sorted element. 
- - Now generate more work if necessary. 
ifi /= I then 

MANAGER.RECEIVE(I, i-I); 
end if; 
ifi /= u then 

MANAGER.RECEIVE(i+l, u); 
end if; 

end ifj 
end loop; 
end QUICKSORTj 

The manager of the tasks maintains a queue of pairs (l,u) which describe 
sub-arrays which need to be sorted. The code for the task manager is very 
similar to the FIFO queue example described on page 173. The only differ­
ence is that the items to be queued are pairs of integers rather than values 
of type 'queueJtem'. The ENQUEUE entry point is renamed RECEIVE, 
and the DEQUEUE entry pointy is renamed DISPATCH. In addition, the 
MANAGER task must detect when the array of keys has been completely 
sorted, and inform the QUICKSORT tasks. Failure to do this would result 
in deadlock, and hence non-termination of the algorithm. 

task MANAGER is 
entry DISPATCH(l, u : out integer); 
entry RECEIVE(I, u : in integer); 

end MANAGER; 
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task body MANAGER is 
sorted : integerj 
the_workers: array (1 .. number_oLsorters) of QUICKSORT 

begin 
sorted := Oj - - must terminate when sorted = size 
- - now dispatch the first task explicitly 
accept DISPATCH(l, u : out integer) do 

1 := Ij u := sizej 
end acceptj 
while sorted /= size loop 

select 
when not empty(workAueue) => 

or 

accept DISPATCH(l, u : out integer) do 
- - get next (1, u) pair from queue 
sorted := sorted + 1 j 

end acceptj 

when not full(work_queue) => 
accept RECEIVE(l, u : in integer) do 

- - put the (1, u) pair into the queue 
end acceptj 

end selectj 
end loopj 
for sorted in l..number_of...sorters loop 

accept DISPATCH(l,u : out integer) do 
1 := Ij u := Ij - - this will terminate the sorter tasks 

end acceptj 
end loop 
end MANAGERj 

181 

This piece of code requires some explanation. The QUICKSORT task 
type is used to generate a Jized number of QUICKSORT task instancesj the 
actual number will depend on how much physical parallelism there is in the 
the target hardware. For example, when running on a single processor, there 
is absolutely no advantage in generating more than one QUICKSORT task. 
The manager task detects termination by counting the number of sorting 
operations it dispatches to the workers, and since each dispatched task 
results in exactly one item being placed in its correct position, providing 
a direct mechanism for detecting when the parallel sorting operation is 
complete. 

This parallel version of Quicksort uses a task decomposition scheme 
known as recursi1Je divide-and-conquer. This scheme can be particularly 
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G 

Figure 9.2 Task graph for parallel Quicksort 

effective at generating large quantities of parallelism since the parallelism 
can grow exponentially. However, as is the case with this example, much of 
the work done in each task is related to the creation of tasks (that is, the 
decomposition itself), and as the number of tasks mushrooms towards the 
end of the computation the amount of real work done per task becomes quite 
smalI. In a practical parallel sorting algorithm one would not decompose 
the problem down to the most trivial case (as we have done here), but stop 
generating tasks when an optimum value for u-l is reached and revert to a 
sequential sorting algorithm. 

Let us now ex amine this parallel algorithm from the point of view of 
deriving an expression for the expected execution time on a parallel machine 
with a given number of processors. Observing figure 9.1 one can see that the 
total execution time depends on the length of the path from the initiation 
of the root task to the termination of the final leaf task. This can be 
represented as a task graph G, as shown in figure 9.2, in which Ti denotes 
task i and Ti has execution time ti. In the parallel Quicksort algorithm the 
values of ti depend on the distribution of values within the range of keys 
to be sorted since at each stage the algorithm chooses a supposedly median 
value from the values to be sorted and ranks the remainder with respect to 
this value. 

Some definitions 

Given a set of tasks Tl, T2 , ••• , Tn that are partially ordered in their execu­
tion sequence by a precedence relation<, we call Ti a predecessor of Tj (and 
Ti a successor of Ti) if Ti < Ti' In terms of scheduling, this means that Ti 
must not begin executing until Ti has terminated. If Ti < Tj and there is no 
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task Tk for which Ti < Tk and Tk < Ti then Ti is an immediate predecessor 
of Ti (and Ti an immediate successor of Ti). Tasks with no predecessor are 
initial and tasks with no successor are final. 

Using these notions we can define formally the task graph G to be the 
set of nodes Ti {I ~ i ~ n} in which there is a directed are from Ti to Ti if Ti 
is an immediate predecessor of Ti' A set of tasks is said to be independent 
if for any tasks Ti,Ti in the set, neither Ti < Ti nor Ti < Ti. The width of 
G (written width(G» is the maximum of the sizes of all independent sets 
of tasks. We also define a chain of tasks to be a task graph in which the 
tasks are totally ordered, and then the length of the chain is the number of 
tasks in the chain. The depth of a graph G is the maximum length of all 
the chains in G. 

Estimating execution times 

A probabilistic analysis of the execution times for statically decomposed 
tasks {where the decomposition is not computed 'on-the-Hy'} has been given 
by Robinson [Rob79], and here we apply his techniques to our example. 

Let tG be a random variable which represents the execution time of 
graph G, and let FG be the cumulative distribution function (c.d.f.) for 
tG. In order to make statements which express tG and FG in terms of the 
individual task execution times ti, and task c.d.f's Fi, the task graph must 
be simple. A simple task is defined as follows. Let Cl, C2 , ••• ,Cm be all 
chains from initial to final tasks in G. We define an expression Ei for all 
chains Ci containing tasks Til , Ti2" .. ,Tik , such that Ei = xi} Xi2 ••. Xik' and 
then G is said to be simple if the polynomial expression Ei + E2 + ... + Em 

can be factored such that each X appears only once. Simple task graphs 
correspond to parallel programs in which task creation always takes the 
form 

PAR(P1; P2; P3; ... ; Pn) 

and where the sub-tasks P1 to Pn do not synchronise with any task except 
at their initiation and termination. 

If we assurne that the execution times of all mi tasks at level j in a 
simple task graph G, of depth L, are identically distributed with mean J..I.i 
and standard deviation ui, then on k processors, where k ~ width{G), the 
upper and lower bounds on the expected execution time, denoted E{tG) can 
be derived using Order Statistics [Dav70, pp.46-48], [Rob79], and are given 
by equation 9.1. 

L L ( ) m· -1 
L,J..I.i ~ E{tG) ~ L, J..I.i + J Uj 
;=1 ;=1 v'2m; - 1 

(9.1) 
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Figure 9.9 State-transition diagram Jor parallel Quicksort 

The conditions under which this equation applies describe an impor­
tant but rather restricted dass of parallel algorithms. For example, k 2 
width(G) implies that there are enough processors to absorb all task parallel­
ism all of the time, and in most cases this is unrealistic . A more satisfac­
tory analysis technique for dynamically decomposed algorithms (such as the 
Quicksort derived earlier) is that of using queueing models [Kle75]. 

It is possible to analyse divide-and-conquer algorithms like Quicksort 
by considering the divide and conquer phases separately (even though the 
two phases may be interleaved). Given k processors as before, and a level of 
partitioning which results in M leaf tasks (sequen tial Quicksort proced ures), 
the sequential creation and execution of M tasks can be represented by 
astate-transition diagram, as illustrated in figure 9.3. Note, although 
each Quicksort task is theoretically capable of creating two sibling tasks in 
parallel, enforced sequential access to the task queue means that in practice 
they are created sequentially. 

In figure 9.3 each state is identified by astate variable which in this case 
is defined as the number of tasks in the task queue (initially one). The times 
to decompose and execute tasks are assumed to be exponentially distributed 
with means of d;1 and eM respectively, where i is the instantaneous task 
queue length. Hence, the me an time to decompose and execute M tasks 
on k processors can be found by summing the me an state-transition times 
from the start of the Quicksort algorithm to its termination. The me an 
execution time is then E(T) 

E(T) = ~1 (min(i, k)d;)-1 + eiJ ( M; k + ~ i-1) (9.2) 

In any realistic model of execution time on a parallel architecture the mean 
decomposition time d; must take account of the time to access a shared 
queue, which in most cases will be a function of k. 
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These short examples hopefully serve to illustrate typical techniques that 
can be used to analyse the execution time of parallel algorithms without 
entering into lengthy details which can be found in existing texts. 

9.2.2 Matrix multlplication using message-passing 

In this section we look at the design and implementation of a distributed 
numerical algorithm for computing the product of two square matrices, and 
use the occam language to illustrate how message-passing primitives form 
a key element in these types of algorithm. 

Consider the multiplication of two n x n matrices a and b to produce a 
result matrix c. The method of computing C can be defined by the following 
equation. 

n 

Cij = L aikbkj ; i,j E {I ... n} (9.3) 
k=1 

The first, and most obvious, point to note about this algebraic speci­
fication of matrix multiplication is that it defines a set of n2 independent 
computations. Secondly, each independent computation is a dot-product 
operation comprising 2n dyadic operations (multiply and accumulate) on a 
total of n pairs of input values. However, there are only 2n2 input values in 
a and b, compared with n2 X 2n dot-product input operands, so clearly each 
matrix element from a and b must be used in n independent calculations. 

Since the total number of arithmetic operations is 2n3 , and the total 
number of memory accesses needed to satisfy the operand requirements is 
also 2n3 , the memory bandwidth and CPU bandwidth requirements are 
perfectly matched. This is only true, however, if the rates of memory and 
CPU processing are equal. If one introduce parallelism into the evaluation 
procedure the balance becomes upset. Consider what happens if we use 
n2 processors to compute all Cij concurrently. The minimum theoretical 
computation time, assuming purely sequential processing for each Cij, isjust 
2n. If the memory bandwidth is not increased by a factor of n 2 then the 
utilisation of processors will be less than unity, and the parallel processing 
efficiency will be poor. 

One solution to this problem is to provide highly parallel access to shared 
memory as in the BBN Butterfly, the IBM RP3, and many others. A con­
commitant problem is then the arrangement of memory access patterns to 
ensure that memory bank collisions do not cause undue interference between 
processors. This is a problem that has been studied widely, in particular 
by Lawrie, Chang and Kuck [Law75,CKL77]. The cast of providing the 
required bandwidth to a shared memory structure is sometimes tao great, 
and then other techniques must be sought. 
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An alternative suggested by Kung [Kun82], known as systolic process­
ing, gets round the problem of memory bandwidth by using each value 
retrieved from memory several times. Systolic systems operate by pumping 
each operand value through an array (a systolic array) of processing elem­
ents, in such a way that each value is used at each processor it encounters. 
Systolic arrays normally perform the same computation at each PE in the 
array, and the movement of information between PEs is normally consid­
ered to be synchronous. Input and output from the array oeeurs only at 
the boundary of the array. This conceptual view of systolic arrays, in wh ich 
there exists a common dock, is useful for analysing their logieal behaviour 
although in praetiee the distribution of a eommon doek aeross indefinitely 
large 2-D array structures is not feasible. Systolic arrays are typified by 
e(k) proeessing elements conneeted by a regular static network containing 
e(k) unidirectionallinks. From an oeeam programming point of view this 
is ideal sinee it eorresponds directly with the notions of oeeam channels and 
processes. Let us now consider a systolic implementation of matrix multi­
plication using a two-dimensional systolic array, and then devise a suitable 
implement at ion using oeeam. 

In figure 9.4 the outline of a systolic matrix multiplier is illustrated, 
showing an array of PEs, their communication pathways, and the order 
and placement of input operand values. One ean see that for both the a 
and b matriees a watJefront of values flows into the array at the Northern 
and Western perimeters. The staggering of the rows and columns along 
each input perimeter ensures that the eorrect values meet in the correct 
processing element. To make the array work properly, areal implementation 
of this sehe me would eontain a mechanism for inserting zero values before 
(and after) each staggered a and b vector where required. For darity these 
are omitted from figure 9.4. 

Verifieation of eorrectness 

The regularity of many systolie arrays permits the designer to verify for­
mally that the systolie implementation meets the specifieation of the al­
gorithm. In the seheme presented in figure 9.4 the array operates syn­
ehronously by propagating the a values one array-position Eastward and 
the b values one array-position Southward on eaeh doek eyde. At every 
processor Pii for whieh at least one pair of non-zero values has been re­
eeived, the Ioeal sum (wh ich is initially zero) is ineremented by the produet 
of the Iocal a and b values. 

Theorem 
At every proeessor Pii {I ~ i ~ n, 1 ~ j ~ n} the loeal sum Ci; after 2n-1 
doek cydes is given by Ci; = L:k=l aikbk;. 
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Figure 9.4 A systolic matrix multiplication scheme 

Proof 
The alignment of input values ente ring the Northern and Eastern perimeters 
is such that values aile and blei {I :s; k :s; n} are deIayed from entering the 
array for i-I clock eycles. Hence, at proeessor P z" in doek eyde t the Ioeal 
values of a and b, denoted a(x, y) and b(x, y) are given by the following two 
equations, assuming L = max(x, y). 

a(x,y) = { 
0 ift < i 

(9.4) 
a",L-t ift2':i 

b(x, y) = { 
0 ift< i 

(9.5) 
h-t,z ift 2': i 
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Consequently, after L clock cycles, processor P ii receives its first pair of 
non-zero valuesj an and b1i . During the sub se quent n clock cycles the 
sequence of pairs (ai2' b2i ), (aiS, bsi ), ... , (ain, bni ) passes through P ii' By 
observation it is clear that the summation of the products of these pairs 
will produce a value equivalent to L:k=1 aikbkj. Since this is assigned to cii 
the specification is met. 0 

The leading and trailing zero values, not shown in figure 9.4, are neces­
sary only because this is a synchronous systolic array, so when one processor 
receives input all processors receive input. With an asynchronous message­
passing protocol, such as occam channels, this can be avoided and this 
leads to a cleaner and simpler solution. 

We now define an occam process for a single PE which takes input from 
its North and East links, performs a local computation and passes the input 
values to its neighbours via the South and West links. 

PROC element(CHAN OF REAL North, South, East, West) 
REAL a, b, sum; 
SEQ 

sum := 0; 
SEQ i .. 0 FOR N 

SEQ 
PAR 

North? a 
West? b 

sum := sum + Ca * b) 
PAR 

South! a 
East! b 

This process contains an iterative loop which receives a and b values in par­
allel (to avoid possible deadlock, and maximise communication bandwidth). 
Since the process performing the parallel input of a and b values does not 
itself terminate until 60th values have been received, no zero values need 
to be inserted to forcibly align the two input streams at each position in 
the array. For example, processor P 4,1 will not begin executing the first 
sum: =sum+ (a * b) statement until it has received a4,1 and b1,1. This only 
occurs after processors PI,! ... PS,! have each computed their first iteration. 
It is the occam channel protocol wh ich ensures that computations begin 
when their data are available, and this form of processing is usually referred 
to as data-driven processing. 

An array of element processes can be declared by first defining vectors 
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of channels, and then initiating n 2 processes from within a harness process, 
thus 

VAL n IS 100: 
[n+l] [n+l] CHAN OF REAL NS. WE: 
PAR 

PAR i = 1 FOR n 
PAR j = 1 FOR n 

element(NS[i] [j-l]. NS[i] [j]. WE[i-l] [j]. WE[i] [j]) 
Read a and b values from memory and input 

- - to WE[O] [1 .. n] and NS[l .. n] [0] respectively. 

This simplistic scheme omits the check for boundary conditions on the 
Southern and Western boundaries, where processors would otherwise at­
tempt to output to non-existent processors: this could be prevented by the 
addition of a simple test in each element process. For clarity the sequenc­
ing of input values and the removal of output values has also been omitted 
from this example. 

Process placement 

Placing n 2 processes on less than n2 physical processors could pose some­
thing of a problem. The transputer , which is the target hardware for oc­
cam, can support many processes in each processor, but at present has 
only four hard links (eight channels). This is a problem which is apparent 
to all transputer-based systems, such as the Meiko Computing Surface, the 
PARSYS SN1000 series (formerly ESPRIT project 1045), and many smaller 
systems. The actual placement of processes is dictated largely by the phys­
ical topology of the transputer array, except in machines which have the 
ability to reconfigure the links. 

An array of n X n element processes can placed on an array of less than 
n 2 transputers in several ways. For example, the array could be divided into 
strips of rows or columns w processes wide, thus placing w x n processes in 
each transputer, leading to a requirement for at least 2(w+n) unidirectional 
channels going into or out of each transputer. 

If each transputer is given responsibility for a pxp square sub-array, then 
at least 4p channels are required for each transputers. For a fixed size array 
of transputers, say mx m, the number of channels required per transputer 
is p = 4n/m. However, in conventional terms, the input problem size, N, 
is equal to n2 • Hence, we can say that the number of channels required 
per processor is E>(N1/ 2). This conflicts somewhat with the 0(1) hardware 
links provided on the transputer devices. It is therefore common for occam 
programmers to write a routing harness which maps k (k > 4) soft channels 
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down to just eight unidirectional hard channels, effectively multiplexing the 
communication bandwidth at the program level. 

The inter-transputer communication bandwidth requirements of the sys­
tolic matrix multiplication algorithm are proportional to the perimeter of 
each sub-array, and the computational requirements are proportional to the 
area of the sub-array. In the transputer, communication and computation 
in different processes can occur simultaneously, and therefore if the actual 
time spent communicating through the off-chip links is not greater than 
the total computation time of p2 element processes then the utilisation of 
each transputer will be determined only by the granular efficiency of each 
element process. If the reverse is true, then the utilisation of each trans­
puter will naturally be limited by a communication bottleneck. Therefore, 
in transputers there are two efficiency consideration: firstly, the granular 
inefficiency introduced when two processes communicate within the same 
transputer , and secondly the inefficiency wh ich arises due to the communi­
cation between chips. 

Let us for the moment assurne a unit delay for communicating a value 
between two element processes, and ex amine the performance of this dis­
tributed matrix multiplication algorithm. The time taken to propagate a 
and b values to Pn •n (the process farthest away from the sour ce of input), 
denoted here by tpg , is equal to the number of inter-process hops from the 
input perimeters (North and West) to the bottom right-hand corner, mul­
tiplied by the communication time per hop. This is given by equation 9.6. 

tpil = (n - 1)(tcalc + tprop ) (9.6) 

In this equation, tcalc refers to the time taken to evaluate 

s := s + (a * b) 

and tprop refers to the time taken to evaluate 

PAR 
South a 
East! b 

Note, we do not include the time taken to input the a and b values since that 
activity is overlapped with the reception of a and b values in an adjacent 
processor. The time from the initiation of the first element computation 
(that in PI.tl to the termination of the last element computation (that in 
Pn •n ), on an n x n array, is given by T(n) and is equal to the propagation 
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time t pg plus the time to complete n iterations of the main loop in the 
element process. Henee, 

T(n) = (2n - l)(tca l c + tprop ) (9.7) 

The granular efficieney of this parallel computation (see equation 6.2 on 
page 97), denoted '1g, is given by 

(9.8) 

The absolute speedup or gain of a parallel algorithm is defined as the ratio of 
the exeeution time of the best equivalent sequential algorithm to the exeeu­
tion time of the parallel algorithm, expressed as a function of the exploited 
parallelism. In the ease of matrix multiplication, the best sequential algo­
rithm which does not parallelise within the dot-product operation has an 
execution time Ts which involves n3 multiply-aecumulate operations, each 
of wh ich takes a time of tcalc ' 

(9.9) 

Consequently, we ean write down a simple equation for the parallel process­
ing gain, CII' on this algorithm thus 

which is equivalent to 

CII = '1g (2nn~ 1) (9.10) 

This concludes our discussion of speedup and efficieney for this sys­
tolie algorithm. Among the points worth noting are that relative speedup 
(CII/7Jg) is O(n2 ) on n2 proeessors, whieh is O(N) for input of size N. 
This is characteristic of systolic arrays, and means that the array can be 
scaled up in proportion to the size of the input without any degradation in 
performance. 

9.3 Summary 

In this chapter we have looked at multiprocessor software from two view­
points. Firstly, by considering languages for multiprocessors, and secondly 
by considering algorithms for multiprocessors. Following on from our treat­
ment of multiprocessor systems in chapters 7 and 8, in which the distinction 
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between shared versus distributed memory is emphasised, we have exam­
ined a typicallanguage and a typical algorithm for each of these two classes 
of machine. Although this is a very coarse classification of multiprocessor 
systems, the general principles have been expounded. We also looked briefly 
at some techniques for estimating the execution times of parallel algorithms, 
under both static and dynamic decomposition sehernes. Those interested 
in pursuing this line of study further, should consult Quinn [Qui87] which 
eontains a chapter on the design of parallel algorithms, and ehapters on 
eaeh major class of problem. Quinn also presents bibliographie notes on 
most aspects of parallel algorithms. Kleinrock [Kle75] deseribes the theory 
behind queueing networks, and their application in analysing the through­
put of certain types of eomputing system. Many of these teehniques ean 
also be applied to parallel systems. 

This book has aimed to introduee the reader to a variety of topics that 
are relevant in the field of high performance architectures. We began by 
looking at the architecture of SIMD array processors, their interconnection 
techniques (which are also applicable to MIMD systems), and their pro­
gramming methods. We have studied the architecture of so me large scale 
SIMD systems, such as the DAP and the Connection Machine, and exam­
ined their performance at a number of levels. The second half of this book 
has been devoted to multiprocessor architectures, from their design princi­
pIes to example systems, and finally to so me of the software implications of 
such architectures. 

It is likely that parallel processing will take on greater significance as the 
implementation technology of multiprocessor systems matures. As we have 
seen from chapter 7, these systems can range is size from small (less than 32 
processors) systems connected using a single high performance bus, up to 
quite large systems (more than 128 processors) connected using multi-stage 
networks. Bus-connected systems can provide a significant cost advantage 
in multi-user applieations, rat her than genuinely concurrent applications, 
since relatively low communication bandwidth can be tolerated. We have 
seen that to support genuinely concurrent applications a signifieant degree 
of coneurrency in the processor interconnection mechanism is essential. 

The architectures deseribed in volume I all have the same basic goal; 
to make a single stream of instructions execute as fast as possible without 
significant modification at the source code level. This naturally involves 
techniques which optimise the placement of information (storage hierar­
chies) and the exploitation of low-Ievel parallelism (parallel functional units 
and pipelining). Vectorising compilers are used to bridge the semantic gap 
between wh at the programmer specifies and how the machine is capable 
of realising that specification. Sometimes this gap is too wide, and users 
are obliged to insert compiler directives into their programs. The types of 
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a.rchitecture described in this volume are qualitatively different in the sense 
that the semantic gap between the architecture and a sequential program 
is so wide that a different approach to programming is required. Architects 
and users of these array processors and multiprocessors have evolved their 
own languages (or language variants), so me of which we have outlined in 
this book. We have hopefully convinced the reader that the task of cre­
ating software for parallel computers is not simply a problem of re-coding. 
existing algorithms. Furthermore, the automatie conversion of existing ap­
plications to run n-times faster on an n-processor machine is a non-trivial 
task, and one which at present limits the commercial applicability of paral­
lel systems to existing software. However, in many cases, the availability of 
highly parallel systems encourages the development of solutions to problems 
previously considered either impractical or too expensive. 
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