
www.manaraa.com

www.manaraa.com

Architecture of High Performance Computers

Volume II

www.manaraa.com

R. N. Ibbett and N. P. Topham

Department of Computer Science
University of Edinburgh
Edinburgh
Scotland ER9 3JZ

i\rray processors
and multiprocessor systems

Springer Science+Business Media, LLC

Architecture of
High Performance
Computers
Volume II

www.manaraa.com

© Roland N. Ibbett and Nigel P. Topham 1989

Original1y published by Springer Verlag New York in 1989.

All rights reserved. No reproduction, copy or transmission
of this publication may be made without written permission.

First published 1989

Published by
MACMILLAN EDUCATION L TD
Houndmills, Basingstoke, Hampshire RG21 2XS
and London
Companies and representatives
throughout the world

ISBN 978-1-4899-6703-9 ISBN 978-1-4899-6701-5 (eBook)
DOI 10.1007/978-1-4899-6701-5

www.manaraa.com

Contents

Preface viii

1 Introduction 1
1.1 Parallel hardware structures . 2
1.2 Taxonomy of parallel architectures 3
1.3 Summary of the book 4

2 Array-processor Architecture 6
2.1 Design Issues . 7

2.1.1 Array processor organisation 8
2.1.2 ILLIAC IV - a distributed-memory machine 11
2.1.3 BSP - a shared-memory machine 12

2.2 Performance issues
2.2.1 Scalability.

2.3 Summary

3 Interconnection Networks
3.1 Characteristics of interconnection structures .
3.2 Network routing functions
3.3 Network topology

3.3.1 Static networks ..
3.3.2 Dynamic networks
3.3.3 Multi-stage networks .

3.4 Summary

4 Practical Array Architectures
4.1 The ICL DAP

4.2

4.1.1 System architecture
4.1.2 Array architecture
4.1.3 PE architecture .
4.1.4 Instruction set
4.1.5 Performance ..
4.1.6 The DAP-3 ...
The Connection Machine
4.2.1 System architecture
4.2.2 Processing elements

15
20
21

22
23
24
29
31
35
36
42

43
43
44
45
48
52
56
58
58
59
61

www.manaraa.com

vi

4.2.3 The router
4.3 Summary

5 Array Processor Software
5.1 Array processing languages

5.1.1 DAP Fortran
5.1.2 CM-Lisp

5.2 Algorithms for array processors

5.2.1 Partial differential equations
5.2.2 Minimum path length

5.3 Summary

6 Multiprocessor Architecture
6.1 Design issues

6.1.1 Categories of MIMD architecture
6.1.2 Granularity ..
6.1.3 Load balancing

6.2 Performance issues
6.2.1 Speed-up and efficiency
6.2.2 Extensibility
6.2.3 Reliability and fault-tolerance .

6.3 Summary

7 Shared-memory Multiprocessors
7.1 Shared-memory architecture

7.1.1 Sequential-access shared-memory systems
7.1.2 Highly-connected shared-memory systems
7.1.3 Scalable multiprocessors

7.2 The Sequent Balance 8000 .
7.2.1 Cache consistency .. .

7.2.2 The SLIC
7.2.3 The SB8000 system bus

7.3 C.mmp

7.3.1 The small address problem
7.3.2 Locks and synchronisation.

7.4 The BBN Butterfly
7.4.1 Overview of the Butterfly .
7.4.2 Butterfly processing nodes .
7.4.3 The Butterfly switch
7.4.4 Performance

7.5 Summary

Contents

63
66

67
67
68
70
73

75
79
82

83
86
88
89
90

91
96

.104

.105

.108

109
.109

· 111
.115
.116
.116
.118
.118
.121
.122

.124

· 125
· 127
· 127

· 128
.130

.132

.140

www.manaraa.com

Contents

8 Message-passmg Multiprocessors
8.1 Design issues for message-passing architectures
8.2 Transputer-based systems

8.2.1 Architecture of the T414
8.2.2 The T800 floating point transputer .. .
8.2.3 Constructing multi-transputer systems .
8.2.4 The Meiko Computing Surface .

8.3 Hypercube multiprocessors
8.3.1 Cosmic Cube and the Intel iPSC
8.3.2 The NCUBE/I0 .
8.3.3 The FPS T series .

8.4 Summary

9 Multiprocessor Software
9.1 Languages for multiprocessors .

9.1.1 Ada

vii

141
.143
.146
.147
.156
.158
.160
.165
.165
.166
.167
.167

169
.169
.170

9.1.2 Occam.......... . 175
9.2 Multiprocessor algorithms 177

9.2.1 Sorting on a shared-memory architecture . 178
9.2.2 Matrix multiplication using message-passing . . 185

9.3 Summary . 191

Bibliography 194

Index 201

www.manaraa.com

Preface

This book is the second volume of a two-volume set covering the architec­
ture of high performance computers. The division of material between
the two volumes has been devised so that Volume I essentially deals with
architectures in which parallelism is used to attain high performance but
is hidden from the programmer , whereas Volume 11 deals with machines
which are explicitly parallel in nature. Volume I therefore describes archi­
tectural techniques that can be used, and indeed have become widespread,
in the design of individual high performance processors, whereas this volume
concentrates on the architecture of systems in which a number of proces­
sors operate in concert to achieve high performance. The high performance
structures described in Volume I are naturally applicable to the design of the
elements within parallel processors. Volume 11 represents a historical pro­
gression from Volume I, describing some architectures and machines which
have evolved recently and could be described as 'state-of-the-art'.

Computer architecture is an extensive subject, with a large body of
mostly descriptive literature, and any treatment of the subject is necessar­
ily incomplete. There are many high performance architectures, both on
the market and within research environments, far too many to cover in a
student text. We have attempted to extract the fundamental principles
of high performance architectures and set them in perspective with case
studies. Where possible we have used commercially available machines as
our examples. The two volumes of this book are designed to accompany
undergraduate courses in computer architecture, and constitute a core of
material presented in third and fourth year courses in the Computer Science
Department at Edinburgh University.

The authors would like to thank Duncan Roweth for vetting the section
which describes the Meiko Computing Surface, as weIl as the colleagues and
friends who read and commented on other parts of the manuscript.

Vlll

Roland Ibbett
Nigel Topharn

www.manaraa.com

1 Introduction

In volume I of this two-volume set we examined the architectural tech­
niques that have been used to produce high performance computers. This
included techniques to maximise processor performancej for example, in­
struction pipelines and parallel functional units. It also included techniques
to maximise the throughput, and minimise the latency, of storage struc­
tures; for example, interleaving and caching respectively. We saw how these
design techniques can be brought together in the form of vector processors
in order to provide a platform for very high performance numerical process­
ing. However, all the machines considered in volume I have something in
commonj they operate within a relatively conventional programming model,
and this means that high-Ievellanguage programs written for one high per­
formance architecture will work equally weIl on another, with little or no
modification. In this book we are concerned with architectures for which
this does not necessarily hold true, and for which new languages and new
application algorithms are required. This naturally implies a greater overall
design effort, but in many cases this is outweighed by the resulting gain in
performance. The architectures dealt with by this book all embody some
form of parallel processing capability that cannot be hidden from the user's
view of the machine, at least not without the aid of compilers that are
able to decompose a conventional program into fragments of parallel code
automatically.

One question which must be answered is 'why do we need to consider
new architectures when existing architectures have served so weIl in the
past?'. There are in fact several good reasons why we should consider new
architectures, and as always they stern from changes in the cost and perfor­
mance characteristics of modern technology. Perhaps most importantly, the
cost of replicating a piece of logic, as opposed to making it work faster, has
fallen dramatically. This is due to advances in micro-fabrication technology.
Thus it has become cheaper to build a system using a hundred micropro­
cessors than to build a single-processor system that is one hundred times
more powerful than a single microprocessor. This follows from two related
facts: firstly, the cost of each transistor on a silicon die has fallen continu­
ously since integrated circuits were developed, and secondly, the number of
transistors that can be squeezed onto a single silicon die has also increased.
This has now reached the point where complete processors, using many of
the techniques found in volume I, can be fabricated as a single device. For

1

www.manaraa.com

2 Architecture of High Performance Computers - Volume II

Exploiting Spatial
Parallelism

Figure 1.1 A spatially-parallel structure

example, the Motorola,M88100 microprocessor supports a number of par­
allel functional units and has a Score board to deal with data dependencies
as in the CDC 6600 and 7600 mach in es.

It is anticipated that as a result of the availability of high performance
single-chip processors, and the ever-increasing demand for more powerful
computing systems, the market for parallel processors will increase dramat­
ically during the late 1980s. For example, one market prediction [JD86]
states that the value of sales of parallel processors in the UK alone is likely
to increase by 500% in the period 1988-89. The supercomputer market,
traditionally the principal beneficiary of research into high performance
computer systems, is expected to be eclipsed by the expanding market for
parallel workstations and parallel symbolic processors as small-scale parallel
systems become more widely available.

1.1 Parallel hardware structures

All computing systems are constructed from interconnected components,
and depending on the level of abstraction at which a system is viewed,
these components could be transistors, gates, registers, arithmetic units,
memories, or even complete processors. At all levels of abstraction there
are two fundamental ways in wh ich components can be composed to create
parallel computing structures.

Perhaps the simplest way to introduce parallelism into a computing
structure is to replicate a component n times, as shown in figure 1.1. To
exploit this form of parallelism, the units of information processed by the
original (non-parallel) component must be partitionable. In other words
the task space must be parallelised. For this reason this form of parallel-

www.manaraa.com

Introduction 3

Exploiting Temporal Parallelism

X,--LH5= . =0= ·
Figure 1.1! A tempo rally-parallel structure

ism is known as spatial parallelism. A typical example from the sphere of
ordinary human activity is the familiar row of checkout desks one finds in
supermarkets.

The other fundamental way of introducing parallelism into a processing
activity is to partition the processing activity into a number of steps, as
shown in figure 1.2, which when applied sequentially to each unit of infor­
mation performs the original task. In other words, the task is partitioned
in time, with each step of the task being applied to aseparate unit of in­
formation. For this reason this form of parallelism is known as temporal
parallelism. A typical example is 'assembly line' manufacturing. The appli­
cation of temporal parallelism in computing pro duces pipelined structures
(see volume I, chapter 4).

The amount of parallelism that can be exploited using temporal parallel­
ism depends on the divisibility of the task being parallelised, whereas the
amount that can be exploited using spatial parallelism depends only on the
number of independent tasks.

1.2 Taxonomy of parallel architectures

There have been several attempts to devise classification schemes for com­
puter architectures, particularly parallel architectures, none of which are
entirely adequate. Probably the most widely accepted classification is that
suggested by M. J. Flynn [Fly72]. Flynn's classification is based empirically
on the multiplicity, or otherwise, of instruction and data streams. This leads
to four classifications.

1. SISD - single instruction stream, single data stream.

2. SIMD - single instruction stream, multiple data stream.

3. MISD - multiple instruction stream, single data stream.

4. MIMD - multiple instruction stream, multiple data stream.

www.manaraa.com

4 Architecture of High Performance Computers - Volume II

SISD machines employ no explicit parallelism, and within this classification
fall machines such as the IBM System/360 and /370 and the CDC 6600 and
7600, even though these mach in es exploit small-scale parallelism. SIMD
machines are those in which a single stream of instructions operates on a
stream of data containing a large, and variable, number of data items. This
normally includes array processors, such as those described in chapter 4,
as weH as vector machines such as the CRAY-l and the CYBER 205 (see
volume I, chapters 7 and 9 respectively). MISD machines are somewhat elu­
sive, and the absence of machines in this category would seem to indicate
that Flynn's classification is not particularly effective. MIMD machines are
those machines in which there is more than one stream of independent in­
structions. This includes all multiprocessor systems, such as those described
in chapters 7 and 8. Flynn's classification is used throughout this text.

Other classification schemes include PMS [SBN82] and Hockney and
Jesshope's 'structural notation' [HJ81], both of which attempt to describe
the physical structure of a machine in a similar style to a chemical formula.
These classification schemes are little used, and at present Flynn's classi­
lication in the only widely accepted shorthand notation for distinguishing
between broad classes of parallel machine.

1.3 Summary of the book

To study high performance parallel architectures requires a treatment of
four primary aspects of system design; hardware structures, parallel lan­
guage design, applications (algorithms), and performance (both analytical
and empirical). In this book we attempt to address these issues in an inte­
grated way for each major type of parallel architecture.

This book is concerned principally with two general types of architec­
ture: SIMD-array processors and MIMD multiprocessors. Chapters 2, 4
and 5 deal with the former, and chapters 6 to 9 deal with the latter. Chap­
ter 3 deals with interconnection structures for parallel machines, and is
relevant to all forms of parallel machine.

In chapter 2 we examine issues in the design and performance of SIMD­
array processors, and briefty trace the historical evolution of SIMD ma­
chines. Chapter 4 describes the the architecture of two example SIMD ma­
chines in detail: the ICL DAP and the TMC Connection Machine. Some of
the principles and practice of programming languages for SIMD machines
are outlined in chapter 5, and one example application for each of the ma­
chines described in chapter 4 is presented. Chapter 3 describes the principles
of processor interconnection networks; their taxonomy, their structure, and
their routing mechanisms. The material in chapter 3 should be consulted
be fore studying the array machines described in chapter 4, and before con­
sidering the MIMD systems in chapters 7 and 8.

www.manaraa.com

Introduction 5

In chapter 6 the design principles of multiprocessor architecture, and
their performance characteristics, are outlined. This chapter includes some
material on general design issues, such as granularity, extensibility, reliabil­
ity, and the basic ways in which processors can cooperate on a single task.
We also describe a simple analytical model for the performance of multi­
processor systems. Chapters 7 and 8 are each devoted to one of the two
major types of multiprocessor architecture: shared-memory systems and
message-passing systems. Within each of these chapters we characterise
the respective architectural types in terms of the interconnection mechanism
between processors. For example, in chapter 7 we divide shared-memory
machines into those connected by cheap limited-bandwidth buses, expen­
sive high-bandwidth cross-bar switches, and multi-stage networks - which
are essentially a compromise between busses and cross-bars. Chapter 8 is
divided into those systems which use smaH-degree static networks, typified
by transputer-based systems, and those which rely on static networks of
n-th degree, typified by hypercube-based multiprocessors.

It is hoped that through the analysis and discussion of the architectural
examples in this book we are able to explain the need for, and the evolution
of, the parallel architectures of today, as weH as introduce some of the
problems to be solved by the computer architects of tomorrow.

www.manaraa.com

2 Array-processor Architecture

In his Turing Lecture entitled "Can Programming be Liberated from the von
Neumann Style", Backus [Bac78] introduced the term von Neumann bot­
tleneck. This refers to the fundamental speed limitation of machines which
have physically separate processing and storage units. In such machines the
link between the two parts creates a bottleneck, defining an upper-bound
on performance. Furthermore, this two-part design pro duces extremely
inefficient architectures when the metric of efficiency is the utilisation of
individual switching elements.

Let us consider a conventional 'von Neumann' architecture consisting
of a single processor and an associated memory. This processor-memory
configuration is constructed from a technology which permits machine in­
structions to be executed at a frequency of /J instructions per second. Let
us ass urne that there are p switching devices (typically transistors) within
the processor, and that every tI = 1/ /J seconds a proportion r {o < r < I}
of these devices switch, and thus perform some useful work. Let us also as­
sume that the basic architecture of this machine does not alter as advances
are made in device technology to increase the performance of the proces~
sor. Then of course r will remain constant. The memory contains m bits,
and empirically the value of m is linearly dependent on the speed of the
processor, /J. Hence we can say that m = kdI, for so me system constant
k l . This means that if each bit of memory requires k2 switching devices
(we ignore memory decode logic for simplicity), then the total number of
devices in the machine is p + k2m. Since each instruction activates 0(1)
bits of memory, then for some system constant k3 , the mean utilisation of
devices, Ud, is

(2.1)

Ifwe introduce constants a = r+k2ks/p and b = k1k2/p the above equation
can be re-written as

This is a familiar form for utilisation equations (see equations 4.3 and 10.3
in volume I, and equation 6.2 in this volume) and immediately indicates that
utilisation decreases monotonically with increasing /J. In other words, as
the machine becomes more powerful the utilisation of individual switching
devices falls towards an asymptotic value of zero; not exactly a favourable

6

www.manaraa.com

Array-processor Architecture 7

relationship. Some architects accept this as the price which must be paid for
more powerful systems. Others see it as an argument in favour of alternative
architectures, claiming that a more sensible organisation is one in wh ich the
ratio of processing power to memory size is fixed, and an increase in memory
automatically produces an increase in processing performance. This is the
approach adopted by SIMD-array architectures. In these architectures the
units of processing are atomic processor-memory 'cells', and increments
in performance are achieved by replicating complete cells rather than by
simply using faster technology.

In volume I the use of pipelining and parallel functional units is dis­
cussed at length. Whilst these techniques are useful, and have their place
in the standard repertoire of high performance techniques, the additional
performance they offer is li mi ted by the quantity of parallelism they can
extract from a single stream of scalar instructions. For example, parallel
functional units rely on the presence of independent operations within a
single stream of scalar instructions in order to extract low-Ievel parallelism
automatically. Vector processors are able to exploit the parallelism in vector
and matrix computations, but only to an extent determined by the degree of
pipelining. In chapter 4 of volume I it was shown that there is an optimum
degree of pipelining for every function, and hence the performance gained
as a result of pipelining alone is fixed. These limitations are not present
in array machines, since parallel operations within each computation are
partitioned spatially rather than temporally. Therefore, the throughput of
an array structure is only limited by the size of the array and the quantity
of independent data.

In chapter 4 we ex amine two array machines in detail. In the remain­
der of this chapter we discuss some basic principles of array architectures,
analyse their performance, and briefly review the historical development of
a number of important array machines.

2.1 Design Issues

Empirical evidence suggests there are two basic ways in which an array
of functional units (of whatever type) can be composed to form an array
structure. These are known as lockstep arrays and cyclic arrays, and are
illustrated in figure 2.1. The lockstep array comprises a number of array
elements, each with an output register which is strobed by a common dock.
Each element in the array requires a new set of input operands every dock
period and produces a new result every dock period. To operate success­
fully, the computation in each element must be independent of all other
elements, and all computations should take roughly the same amount of
time. In a cydic array the input operands are accepted in sequence and get
farmed-out to the array elements on a first-come-first-served basis. Hence,

www.manaraa.com

8 Architecture of High Performance Computers - Volume II

Common Clock Staggered Clocks

+ ... i

f(x,)

Lock Step Array Cyclic Array

Figure 2.1 Loekstep and eyclie array organisations

if the latency of the array unit is t" and there are n of them in the array,
the peak evaluation rate is nlt I per second. Again, all computations must
be independent, although they need not take the same amount of time.
Interleaved memories, especially in vector machines, are often organised as
cyclic arrays of memory modules.

Applying the concept of array-parallelism to processor design involves
effort in three major areas. First of all the processing elements of the array
must be replicated, secondly the memory must be partitioned in order that
the aggregate processing and memory bandwidths are well-matched, and
thirdly these components must be connected so that they form an integrated
computing structure.

2.1.1 Array processor organisation

The classical structure of an SIMD-array architecture is conceptually sim­
ple, and is illustrated in figure 2.2. In such architectures a program consists
of a mixture of scalar and array instructions. The scalar instructions are
sent to the scalar processor and the array instructions are broadeast to all
array elements in parallel. Array elements are incapable of operating au­
tonomously, and must be driven by the control unit.

There are two important control mechanisms: a loeal eontrol mechanism
by which array elements use local state information to determine whether
they should execute a broadcast instruction or ignore it, and a global control

www.manaraa.com

Array-processor Architecture 9

Broadcast Instructions

• 0

I I I
, I I ,/
"- - - - - - - - - ..,- - - - _.- - - - - - - - -- ---

Global State

Figure tU! Classical SIMD-array architecture

mechanism by which the control unit extracts global information from the
array elements to determine the outcome of a conditional control transfer
within the user's program. Global information can be extra.cted in one of
two ways. Either the control unit reads state information from one, or 80

group, of array elements, or it senses a boolean controlline representing the
logical OR (or possibly the logical AND) of a particular local state variable
from every array element.

The three major components of an array structure are the array units,
the memory they access, and the connections between the two. One can
identify two ways in which these components can be organised. Figure 2.3
shows the basic structure of an array processor in which memory is shared
between the array elements and figure 2.4 illustrates the basic structure of
an array processor in which all memory is distributed amongst the array
elements.

If 8011 memory is shared then the switch network connecting the array
units to the memory must be capable of sustaining a high rate of data trans­
fer, since e1Jery instruction will require massive movement of data between
these two components. Alternatively, if the memory is distributed then the
majority of operands will hopefully reside within the local memory of each
processing element (where processing element = arithmetic unit + memory
module), and 80 much lower performance from the switch network can be
tolerated. The design of the switch network is of central importance, and
this topic is covered in chapter 3.

www.manaraa.com

10 Architecture of High Performance Computers - Volume 11

PC

Array Control Unit

Program
Memory

Figure e.9 Array processor with global shared memory

PC

Array Control Unit

Interconnection
Network

Program
Memory

Figure e.,/ Array processor with distributed local memory

www.manaraa.com

Array-processor Architecture 11

These two styles of array processor architecture are typified by the highly
influential machine, which had a fuHy distributed memory, and the ill-fated
Burroughs Scientific Processor (BSP), which had a shared memory.

2.1.2 ILLIAC IV - a distributed-memory machine

The ILLIAC IV system was the first real attempt to contruct a large-scale
parallel machine, and in its time it was the most powerful computing ma­
chine in the world. It was designed and constructed by academics and
scientists from the University of lllinois and the Burroughs Corporation. A
significant amount of software, including sophisticated compilers, was de­
veloped for ILLIAC IV, and many researchers were able to develop parallel
application software.

ILLIAC IV grew from aseries of ILLIAC machines. The work on ILLIAC .
IV began in the 1960's, and the machine became operation al in 1972. The
original aim was to produce a 1 GFLOP machine using an SIMD array
architecture comprising 256 processors partitioned into four quadrants, each
controlled by an independent control unit. Unfortunately, as is often the
case with such ambitious projects, escalating costs and unforeseen engi­
neering problems resulted in just a single quadrant being built. The clock
speed of the machine was intended to be 25 MHz but this too had to be
reduced to 10 MHz, due partly to signal transmission delays resulting from
the machine's large physical dimensions.

The processors in each quadrant were connected in the topology shown
in figure 2.5. Although this looks superficially rather like a square-grid of
connections it is in fact known as achordal ring (see page 31), due to the
shifted wrap-around of the boundary connections. Each inter-processor link
consisted of a bi-directional 64-bit wide channel.

The control unit of ILLIAC IV, was responsible for performing scalar
operations and issuing SIMD instructions to an array of 64 processing
elements. These elements executed instructions in lockstep, although each
processing element had the ability to execute instructions conditionaHy us­
ing local condition variables. This mechanism whereby processing elements
selectively 'sit out' instructions makes the machine particularly flexible, and
is a feature that has been included in a11 subsequent SIMD machines. It
can even be seen in some vector machines in the form of control vectors (see
volume I, section 9.2.5). Instructions for both the scalar section and the
ILLIAC IV array were stored in the 2048 X 64-bit local memories associ­
ated with each processing element. These memories were constructed using
thin-film storage devices and had access and cycle times of 120 and 240ns
respectively. The control unit (CU) interface to these memories was a fur­
ther example of array parallelism in operation; the data pathway between
the CU and the memories was 512 bits wide permitting the CU to access

www.manaraa.com

12 Architecture of High Performance Computers - Volume II

•••

• • •

Figure e.5 ILLIAC IV processor interconnection topology

one 64-bit word from each memory module in one row of processing elem­
ents concurrently (and at a common address), thus achieving an effective
peak memory bandwidth of 1 word every 30 ns.

Although the actual performance of ILLIAC IV on real applications was
only 2 to 4 times that of a CDC 7600, the machine is of significant historical
value since it is arguably the origin of aH subsequent parallel machines.
Details of the architecture and of ILLIAC IV are given in Barnes et al.
[BBK*68], and an account of the development of the machine is presented
by Falk [Fal76].

2.1.3 BSP - a shared-memory machine

The Burroughs Scientific Processor (BSP) was effectively a successor to
the ILLIAC IV machine, but with an architecture modified to reflect the
fact that the BSP was intended to be a commercial product. It had fewer
processing units than ILLIAC IV, just sixteen in the pre-production version,
and most importantly these sixteen processors aU enjoyed equal access to a
common logical address space which was divided into a number of physically
separate memory modules. The basic structure of the BSP is illustrated in
figure 2.6. Each processing element was nothing more than an arithmetic
unit with input and output registers, and these units were homogeneous
and non-pipelined.

The BSP was a 48-bit machine, and each arithmetic unit (AU) per-

www.manaraa.com

Array-processor Architecture

r-------

Operand
Routing
Switch

--------,

Result
Routing
Switch

I

I

I
I
I
I __________________ J

ArrayUnit

Figure H.6 BSP array unit architecture

13

Array
Control

Unit

Broadcast
Instructions

formed floating-point addition and multiplication in two 160 ns clock peri­
ods. The four units which constitute the array (the AUs, memories, result
routing switch, and operand routing switch) formed a five-stage macro­
pipeline, and by careful scheduling of micro-instructions the CU was able
to overlap instructions in order to maximise the utilisation of the macro­
pipeline. The BSP operated by partitioning multi-dimensional array oper­
ations between the AUs on an element-by-element basis. The CU received
instructions from the scalar processor and decomposed them into micro­
operations which were then scheduled using 'templates'. These were effec­
tively pre-computed assignments of the five stages in the circular macro­
pipeline to the micro-cycles within each instruction.

A typical sequence of micro-operations required to process each group
of sixteen operands would be

1. read operands from memory
2. route operands to AUs
3. perform arithmetic operations
4. route results to their memory modules
5. write results to memory

www.manaraa.com

14 Architecture of High Performance Computers - Volume II

The BSP provides equal access to all memory modules, from all arith­
metic units, and as such is able to hide the array-like features of the machine
from software. In practice the programming of the BSP, and the types of
language structures most suitable for the form of parallelism it embodies, are
reminiscent of vector processors. This is in fact true of all array processors
with globally accessible operands, since parallel array units can be organised
as simple cydic arrays, and cydic array structures have the same perfor­
mance characteristics as pipeline structures. The BSP manages to achieve
a high performance connection between an array of arithmetic units and
an array of shared memory modules by a rather novel address interleaving
mechanism, and this is worth considering in a little more detail.

In the BSP the unit of parallelism is the vector, and elements of these
vectors are accessed at index locations which can vary by a fixed increment.
This increment may be any integer value, and this allows rows, columns and
diagonals of multi-dimensional arrays which are mapped on to a BSP vector
to be extracted by the CU with ease. For example, a two-dimensional array
X may be defined in Pascal notation as

X : array [l .. column_length, 1 .. row_length] of real;

and in the BSP this would be laid out in memory in a column-wise man­
ner. Therefore, to extract a column requires an inter-element stride equal
to 1, and to extract a row requires a stride equal to column_length. Arbi­
trary diagonals can be extracted by using a stride equal to column_length
+ 1 or column_length - 1. High performance processing of these arrays is
achieved by extracting sixteen elemental operand sets and presenting them
to the sixteen arithmetic units in parallel, and naturally maximum through­
put of the array can only occur if all elements are located in different mem­
ory modules. The interleaving scheme in the BSP therefore incorporates 17
memory modules, the lowest prime number greater than 16. For memory
address a, the module number m containing that address is hence given by

m =1 a 117
and the offset within module m is given by i

. l a J 1= -
17

This means that if we pick 16 values for a, separated by a constant value
d, each will yield a different value for i provided d is not a multiple of 17.
'{'his results in a high probability of conflict-free access to many common
array structures.

The movement of operands between memory modules and arithmetic
modules was performed by two routing switches, one for input and one for

www.manaraa.com

Array-processor Architecture 15

output operands. Each routing switch comprised a fuH 16 x 17 cross-bar
switch, moving data in units of 48 bits, plus error control bits. These
switches had a maximum throughput of 16 words every 160nS, or 100
Mwords per second. The memory modules had a cyde time of 160nS, and
most arithmetic functions required two dock cydes. This gave the BSP a
peak operating speed of 50 MFLOPS.

Only a single pre-production version of the BSP was ever producedj by
the time it had completed its development phase it had been superseded by
the CRAY-1, and in 1979 Burroughs suspended the BSP project. One of
the primary reasons for the demise of the BSP was arguably the decision
to go for a slow dock speed and non-pipelined logic in the arithmetic units.
This resulted in a lower peak performance than would otherwise have been
possible from the ALUs, but made tractable the problem of connecting a
smaIl but significant numbers of ALUs to a physically common memory. The
designers of the BSP believed that the ease with which its peak performance
could be approached would counteract the slow dock speed argument, and
as Austin observed [Aus79]

"Simply put, the dock frequency does not indicate how fast
a machine runs, just how often it stops !"

If the arithmetic units of the BSP had been pipelined internally the whole
machine would have had a structure similar to a multiple-pipe vector ma­
chine, such as the CYBER 205 (see volume I, chapter 9) or the NEC SX
Series machines [WKI86].

Despite the curtailment of its commercial career the BSP is often cited as
an example of a global-memory array processor, and exceHent accounts of its
detailed architecture and engineering can be found in Kuck & Stokes [KS82]
and Hockney & Jesshope [HJ81, pages 198-211]. The cost of providing fuH
access to all memory modules in a shared-memory SIMD architecture has
meant that to date no large-scale commercial systems have used this form
of architecture.

2.2 Performance issues

To analyse the operational performance of processor arrays, on real prob­
lems, we need to model such systems at two levels, the instruction level and
the program level. At the level of individual array instructions the mapping
of application paraIlelism to the available hardware parallelism determines
the net processing rate for the duration of a single operation, and this can
be modelled fairly straightforwardly. At the level of a complete program
the mix of highly parallel array instructions and sequential host-processor
instructions determines the effective speedup bounds, and these depend
ultimately on the structure of the application being processed.

www.manaraa.com

16 Architecture of High Performance Computers - Volume II

Let us consider the evaluation of a single array instruction on a two­
dimensional array of single-bit processing elements. Firstly, let us assume
that the instruction in question defines a word-Iength operation over an
N X M array of w-bit words. Secondly, let us also assume that the array
processor consists of a grid of x X y bit-serial processing elements, each with
a clock frequency of 4> cycles per second. For example, in the ICL DAP
(described in section 4.1), x = y = 64 and 4> = 5 X 106•

Certain array processors1 are capable of operating in one of two modes;
bit-parallel (word-serial), and bit-serial (word-parallel). In bit-serial mode
all word-Iength operations, for example 32-bit fixed-point addition, are im­
plemented as loops of single-bit operations with each processing element
operating on a unique pair of operands. In bit-parallel mode w single-bit
processing elements operate in concert (rather like a w-bit ALU) to pro­
duce a w-bit result. In the best case xy/w word operations can take place
concurrently. The organisation of bit-parallel and bit-serial operations is
explained in more detail in section 4.1.3.

Hence, NM is the degree of parallelism within an array operation, xy

is the degree of hardware parallelism when operating in a bit-serial fash­
ion, and (assuming w = y) x is the degree of hardware parallelism when
operating in bit-parallel mode.

To gauge the performance of a single array operation one must look at
how an N X M problem can be folded onto an x X y array of processing
elements. Without any sophisticated re-positioning of data values, the array
utilisation in bit-serial mode, Eb., is simply given by

NM

Eb• = Xyr~lr~l (2.2)

The throughput in bit-serial mode depends on the chosen word length, and
so to model the throughput we must include the number of clock periods
required to complete a single-bit operation, ß, and the number of single-bit
operations required per word operation, a. In practice a will be a function
of w. This gives an equation for throughput, WbB' of

4>NM
(2.3)

If we now ex amine how the same N x M problem can be folded on to an array
of N rows of processing elements operating in a bit-parallel configuration
we find that the array utilisation, Ebp , is now given by

NM
E bp = r 1 x NM

z

(2.4)

IBoth the ICL DAP and the TMC Connection Machine are capable of operating in
these two modes.

www.manaraa.com

Array-processor Architecture

W X 108 (opsJsec)

4.0

3.0

2.0

1.0

:

..
.....

.....
...

:

.......... :::::::.: ... -........................ _ .. _ ..•.•..............

17

:
~~.----.----r----.---,----~---r----r---.----.-- N,Af
o 32 64 96 128 160

Figure 2.7 Raw performance curves for an SIMD-array processor

Here we get somewhat similar performance, but we are now folding in only
one dimension. The throughput of the array, in this mode of operation, is
now dependent upon Pi the time to perform a single word operation using
ripple-carry addition. For example, when the DAP (see section 4.1.5) is
performing 32-bit integer arithmetic, and assuming 4 bit-positions of carry­
propagate per dock period, we can expect a value of P in the range 8-10
dock periods. This pro duces a bit-parallel arithmetic throughput of Wbp.

(2.5)

To present a dearer picture of the performance of array processors, the
equations for Wbß and Wbp vs. N (with M = N) are plotted in figure 2.7,
for values of x = y = 64, a = 44 (32-bit integer addition), ß = 2.5, p = 10,
and t/> = 107 . It can be seen than for small values of N and M processing
in bit-parallel mode gives greatest throughput, but for value of N and M
greater than about 25 bit-serial mode is fastest.

www.manaraa.com

18 Architecture of High Performance Computers - Volume II

These raw throughput equations are useful for characterising the ma­
chine architecture, and for permitting simple comparisons to be made against
the raw performance of vector machines such as the CRAY-l and the CY­
BER 205 (see volume I, chapters 7 and 9 respectively). However, these
figures do not tell us how fast a particular algorithm will execute on an
array processor, and this is the only sensible metric with which we can
compare architectures of such widely differing structure.

Chapter 10 in volume I discussed some realistic performance models for
vector machines incorporating the notions of vectorisation level, average
vector length and scalar:vector performance ratios. The concept of a two­
state machine was explained, and this applies equally weIl to an SIMD-array
processor, although some of the equations are a slightly different.

Let us consider an array processor which supports a mixture of array
instructions and scalar instructions. Furthermore, let the ratio of issued
scalar instructions to issued array instructions be r, and let the average
time to execute a single scalar instruction be S dock periods. We assume
that array instructions operate on a matrix of N X M word values, as in the
previous analyses, and that the processing mode is bit-serial word-parallel.
Although other modes are possible, limiting the present discussion to that
most commonly used simplifies matters greatly.

The space-time diagram of figure 2.8 illustrates the machine activity
during a mix of r scalar instructions and one array instruction. Expressing
the efficiency of the machine, on a mix of scalar and array instructions, is
now a relatively trivial task.

ffi . active space-time
e clency = .

total space-tlme
rS+Oi.ßNM

(2.6)

Upper and lower bounds on efficiency

The efficiency of an SIMD system depends on two factors: the amount of
scalar processing, and the effect of folding the processing of a data structure
of arbitrary size onto an array of fixed dimensions.

From equation 2.6 we can see that in the limit, as the proportion of
scalar operations increases (that is, as r -+ 00), the efficiency is defined by

I· ffi . 1 1m e clency = -
r-+oo xy

This is a rather weak lower bound on efficiency since only very inappropri­
ate applications will have values of r which are large in comparison with
Oi.ßNM/S.

www.manaraa.com

Array-processor Architecture 19

Space (Parallelism)

~[~1-----1 r~1~1 -1
xy ----------

~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~

1
0 I I· •• I Time/</l

o r rs f..l rs+aß r~lr~l
aß

Figure 2.8 Space-time diagram Jor an SIMD-array processor

Conversely, as the proportion of sealar operations falls towards zero, the
effideney beeomes

li ffi . NM
. m e eleney = r 1 r 1 r-+O zy!i. M

Z \I

whieh is equivalent to equation 2.2. Therefore, we ean eonsider the folding
problem in isolation by assuming that r = O.

Let us eonsider the best and worst ease values for effieieney when the
size of the data strueture being proeessed is greater than the size of the
physieal array in both dimensions. The best ease eonditions for the folding
problem oeeur when N = k1z and M = k2 y, where k1 and k2 are both
integer constants. Under these eireumstances the effideney is unity. The
worst ease eonditions, assuming N ~ z and M ~ y, oeeur when N = z + 1
and M = y + 1. Then the effideney is given by

. (z+I)(y+l)
efficlency = -'--"';"'~-~

4

This is always greater than 1/4, and henee the lower bound on effieieney
when folding oeeurs eannot be less than 25%.

www.manaraa.com

20 Architecture of High Performance Computers - Volume II

efliciency speedup xlO°

1.00

speedup

0.75 6.0

0.50 4.0

0.25 efliciency 2.0

--
o 800 1200 2400 3200 4000

x,y -+

Figure 2.9 Curves showing the relationship between computational effi­
ciency, speedup and parallelism, in array processors

2.2.1 Scalability

One way of assessing the seal ability of an architecture is to examine the
performance of the system on a problem of constant complexity (fixed N and
M) whilst varying the degree of hardware parallelism, x and y in the case
of a two-dimensional array processor. Using the above models, it is possible
to plot curves to show the relationship between computational efficiency,
speedup and parallelism. Figure 2.9 illustrates these relationships, and it
can be seen that as the size of the array increases the performance also
increases, as one might reasonably expect, but that the effidency falls away
quite markedly. This is due to the end-effects becoming more noticeable
as x -+ N and y -+ M. It can be seen that speedup increases as a step
function, as x and y increase. This continues until x = N (and y = M),
at which point all application parallelism is exploited optimally. Processor
arrays larger than this do not exhibit any further speedup, and naturally
their efficiency tends to an asymptotic value of zero.

www.manaraa.com

Array-processor Architecture 21

One further point to note about the scalability of SIMD architectures
is the problem of global synchronisation. If one assurnes that all processing
elements operate in lockstep, then the dock period of the array cannot be
less than the time to propagate a broadcast instruction from the control unit
to an arbitrary processing element. In a large array the propagation time
of dock and control signals through fan-out logic will become noticeable.
The fan-out delay will naturally grow logarithmically with the number of
processing elements, but the transmission of signals takes O(n1/ 3) time, for
an n-processor system. Proof of this is left as an exercise for the reader.

2.3 Summary

The evolution of array processors can be traced as far back as 1958, when
Unger published a paper entitled "A Computer Oriented Towards Spatial
Problems" [Ung58], from which the first array processor SOLOMON was
developed [SBM62,GM63]. The SOLOMON design consisted of a two­
dimensional array of 32 x 32 processing elements (PEs), each of which
had 128 32-bit words of store and a bit-serial arithmetic unit. All PEs
acted in unison, under the control of a single stream of broadcast in­
structions. The SOLOMON design had a major effect on the subsequent
thinking of computer architects, and led to the development of several im­
portant high-performance architectures including the ILLIAC IV machine
[BBK*68,FaI76], the Burroughs Scientific Processor [KS82], the Burroughs
PEPE machine [CGH*72,VC78], the Goodyear Aerospace Massively Par­
allel Processor [Bat80], the Goodyear Aerospace STARAN [Bat74,Bat76]
and [Bat77], and the ICL Distributed Array Processor (DAP) [Red73]. The
advances in VLSI technology which led to the microprocessor revolution
also had an impact on the design of SIMD array processors. The reduction
in mimimum feature size, and the availability of high-density gate-arrays
and full-custom VLSI as a means of realising a particular implementation
contributed towards the construction of the Connection Machine [HiI85] by
Thinking Machines Corporation in 1985. In chapter 4.1 we use the ICL
DAP and the TMC Connection Machine as examples of practical array
architectures and describe their operation in some detail.

www.manaraa.com

3 Interconnection N etworks

The first half of this book is concerned essentially with the ways in which
massive data parallelism can be processed by large numbers of processing
elements, acting in concert, und er the control of a single sequence of com­
mon instructions. As outlined in chapter 2, these processing elements may
either share a common memory or be provided with their own private me m­
ories. This leads to the two general array architectures shown in figure 2.3
and figure 2.4. In both cases an interconnection structure is required, either
to provide all processors with equal access to a number of parallel memory
modules, or to provide a data communication mechanism between process­
ing elements. The second half of this book is concerned with parallelism of a
different form; where large numbers of processors cooperate asynchronously
on different parts of the same task, either through shared access to the data
structures which define the problem or through a distribution of the prob­
lem coupled with the occasional exchange of messages between processors.
Again, in both of these cases some form of interconnection structure is re­
quired; either to provide concurrent access to a shared memory structure,
or to provide a message-routing facility.

The throughput of the interconnection structure, whether for use in
SIMD array processors or in an MIMD system, should match the combined
bandwidth of the processing elements, and must therefore be capable of sup­
porting a large number of parallel connections. This chapter considers the
design of such parallel interconnection structures, and most of the material
is relevant to both the major forms of architecture discussed in subsequent
chapters.

Conceptually, the simplest way to provide a fuH connectivity between
m source units and n destination units is with a cross-bar switch, as shown
in figure 3.7. The cross-bar switch is capable of realising any one-to-one, or
one-to-many, set of connections. However, the hardware cost is proportional
to m.n, and as m is normally similar in magnitude to n this equates to
approximately n 2. This makes such interconnection structures impractical
for highly parallel systems, where n and mare typically in the range 28 to
216 . Designers must forgo the luxury of full connectivity, and accept more
restricted, or slower, communication structures.

In an SIMD system the movement of data through the interconnec­
tion structure takes place under explicit program contro!. Therefore, data­
movement instructions must define source-to-destination mappings, known

22

www.manaraa.com

Interconnection Networks 23

as routing functions, from which network control signals can be generated.
If the source-to-destination mapping defines a unique destination address
for every possible source address, then the routing function is apermutation
on the source address, and can be defined mathematically. This useful prop­
erty of interconnection networks is explained in more detail in section 3.2.

3.1 Characteristics of interconnection structures

The design-space of interconnection structures can, according to Feng
[Fen81], be represented as the Cartesian product of four primary design
features: operating mode, control strategy, switching method and topology.

The operating mode of an interconnection structure refers to whether
the transfer of data takes pi ace synchronously or asynchronously. The op­
erating mode of an SIMD interconnection structure is usually synchronous,
since all processing elements will typically perform data-movement oper­
ations simultaneously. The operating mode of interconnection structures
for multiprocessor systems is normally asynchronous, since the initiation of
data movement is controlled by independent instructions in each processor.

Interconnection structures consist of active switching nodes connected
by passive links. They can be represented as graph structures in which the
active switching nodes form the ver ti ces and the links between them form
the edges. In order to implement specific routing functions a set of control
signals must be generated for every active component. These control sig­
nals could be generated by a single control unit, using information about
all the connections requiredj this is known as centralised control. Alterna­
tively, the control signals may be generated locally, using only information
about the input-output mappings required of a single switching node or a
group of switching nodes; this is known as distributed control. Interconnec­
tion structures for SIMD systems normally use centralised control, whereas
multiprocessor interconnection structures normally incorporate distributed
control.

The switching method relates to the physical extent and duration of the
switch settings for a particular routing function. There are two switching
methods in common usage: circuit switching and packet switching. A third
method which incorporates elements of packet and circuit switching, known
as hybrid switching, has been suggested by Siegel and McMillan [SMB1].
Circuit switching is normally used, in conjunction with a centralised control
structure, for SIMD systems or bulk data transmissions. It has a relatively
low control overhead, and requires relatively simple switching nodes. Packet
switching is most commonly used in multiprocessor and other MIMD sys­
tems, or where short bursts of data transmission are required. The packets
are normally self-routing, requiring complex switching nodes; often under
distributed control. Routing conflicts are possible when self-routing packets

www.manaraa.com

24 Architecture of High Performance Computers - Volume II

are used, and this in turn requires a conflict resolution strategy. Examples
of conflict resolution strategies are given in section 4.2.3 which describes
an adaptive approach to conflict resolution for a large SIMD array proces­
sor, and in chapter 7 which describes several strategies used in a variety of
shared-memory multiprocessor systems.

3.2 Network routing functions

A large number of network structures have evolved during the last few
decades, with the early research in this area being conducted by telephone
companies [Ben65,Wak68] that needed ever larger and more efficient cir­
cuit switching exchanges. More recently the application of interconnection
networks to parallel computers has been investigated [MGN79,Fen81,Sie79]
and [Law75].

The requirements of parallel computing structures are somewhat differ­
ent from those of a telephone system. In a telephone network requests for
the connection of a circuit-switched link between an originator and a respon­
dent may occur at any time. The primary aim is to maximise the number
of concurrent circuits. In a parallel architecture a network is required to
support either processor-to-memory connections or processor-to-processor
communication links. It is instructive to visualise an interconnection net­
work in a parallel computer simply as a 'black box', with a number of input
ports and a number of output ports, which performs a specified routing
function to connect inputs to outputs.

In SIMD systems, where a single instruction operates on a multiplicity
of data, the routing function may be completely defined within each data­
movement instruction. Consequently all input-output connections will be
distinct. Much of the remainder of this chapter discusses interconnection
networks which fall into this category. In MIMD systems, where each con­
nection is defined by individual processors operating independently, no as­
sumptions can be made about the input-output connections requested by
each processor. For example, two processors may both request data from
the same shared memory bank simultaneously, resulting in network requests
with distinct input ports but the same output port. Although this prob­
lem is not found exclusively in MIMD systems (for an example of routing
conflicts in SIMD systems see section 4.2), most of the research into solving
this problem had been on MIMD systems.

An idealised interconnection structure takes a set of labelled input ports
and sets up a number of connections them to a similar set of output ports,
as shown in figure 3.1. In order to simplify this discussion of interconnection
networks it is assumed that the number of input and output ports in the
network are equal. Hence if we define A to be an ordered set of N port

www.manaraa.com

Interconnection Networks

Input 0

Input N-1

Interconnection
Network

Network
Configuration

Contra I Signals

Output 0

OutputN-1

Figure 9.1 Idealised interconnection structures

labels
A = {O, 1,2, ... , N - 1}

25

A routing function f is is a function from port labels to port labels, thus

f:A-A

If f is an injection on A, then it can often be represented as a sequence
of simple permutations of the labels in A. For example, if A represented
a labelIed deck of playing cards then a possible permutation to perform
would be a perfect shufHe, and in fact this is a very useful permutation for
interconnection networks.

Perfect-shufHe permutations

A perfect-shufHe permutation of port labels can be used to map from a set,
of sour ce labels S to a set of destination labels D. The ordered set of input
labels is divided into two subsets of equal size which are then interleaved.
This can be represented by the bipartite graph of figure 3.2, from which
it can be observed that this permutation can be produced by a simple
manipulation of the binary representation of the source label. If we express
a port label as an ordered set of binary digits, x, such that

x = {an, an-I, ... ,a2, all = an.2n- 1 + an_I.2n- 2 + ... + al

then it is a relatively simple matter to define formally the perfect-shufHe
permutation. Observing the source and destination port labels for N = 4,

S {{O,O}, {O,l}, {l,O}, {l,l}}
D = {{O,O}, {I,O}, {O, I}, {I, I}}

www.manaraa.com

26 Architecture of High Performance Computers - Volume II

Source Address Destination Address
000 .000

g~~§!g~~
011 011
100 100
101 101
110 110
111 .. 111

Figure 9.2 The shuiJle permutation for N = 8

it ean be seen that a perfeet-shufHe permutation consists of a simple eireular
rotation of the port label bits one plaee to the left. Thus, we define the
perfeet shufHe permutation u(x) to be,

It is also possible to rotate just apart of the binary representation of x,
and this gives rise to the super-shufHe and sub-shufHe permutations. The
kth super-shufHe, denoted u k , involves a rotation of the most signifieant k
bits in x, thus

The kth sub-shufHe, Uk, involves a rotation of the least signifieant k bits in
x, thus

The main reason why the perfeet shufHe alone is not suffieient to implement
a fuH intereonneetion strueture ean be seen by observing figure 3.3, whieh
depiets the perfeet shufHe permutation in terms of aH possible inter-nodal
links. When the perfeet shufHe permutation is repeatedly applied to x,
effeetively reeirculating data through the network several times, we notiee
a number of uneonneeted groups of network ports. This is a eonsequenee
of the number of 1 's and O's in the binary representation of x remaining
unaffeeted by the perfeet-shufHe permutation.

The exchange permutation

Another useful permutation is the exchange permutation, fä(X), and this is
defined as

www.manaraa.com

Interconnection Networks 27

Figure 9.9 A recirculating shuiJle network

Informally, the exchange routing function causes the movement of data to
occur between pairs of network ports with labels whose binary represen­
tations differ only in the i th bit position. Therefore an eight-port EI per­
mutation yields the connectivity shown in figure 3.4. It may be noticed

Figure 9.4 Exchange permutations lor N = 8

that the exchange permutation does alter the number of 1 's and O's in the
destination label, compared with the source label, and consequently con­
nects the disjoint groups of network ports produced by the perfect-shufRe
permutation.

The butterfly permutation

The butterfly permutation, ß(x), is defined formally as

Informally, the most and least significant bits in the binary representation of
the network port label are interchanged, and this is illustrated in figure 3.5
which shows the bipartite graph for a butterfly permutation. Two vari­
ants of the straightforward butterfly permutation are possible, the kth sub­
butterfly and the kth super-butterfly. The kth sub-butterfly permutation is

www.manaraa.com

28 Architecture of High Performance Computers - Volume II

Source Address Destination Address
000 .000

001~001 010 010
011 011
100 100
101 101
110 110
111 .111

Figure 3.5 The butterfly permutation for N = 8

performed by interchanging bits one and k in the binary representation of
x, thus

whereas the kth super-butterfly permutation is performed by interchanging
bits n and k, thus

Visualising these permutations, as bipartite graphs, is left as an exercise for
the reader.

The shüt permutation

The shift permutation, a(x), is defined formally as

a(x) = Ix + llN

Informally, the destination label is the numerical value of the source label
plus one, modulo N. When represented aB abipartite graph the shirt per­
mutation looks like figure 3.6. The inverse ofthe shift permutation, a- 1(x),
is also useful and can be observed by reading the bipartite graph for a(x)
backwards. Hence

The shift permutation is an arithmetic permutation, rather than a logical
permutation, aB the label is permuted by a numerical function as opposed
to a bit-manipulation function.

Permutations involving bit-manipulations, if capable of permuting any
n-bit source label to an n-bit destination label, do so in a maximum of
n = log2(N) applications of the permutation. However, permutations in­
volving incremental arithmetic functions on labels may require as many
as N applications of the arithmetic function. As a consequence routing

www.manaraa.com

Interconnection Networks 29

Source Address Destination Address
o 0
1 1
2 ~""-.... 2
3 3
4--__ -//-----·~ 4
5 5
6 6
7 7

Figure 9.6 The shift permutation for N = 7

functions constructed from shift permutations are not as powerful as those
constructed from the exchange, shufHe and butterfly permutations unless
the source and destination labels differ, on average, by less than log2 N.

The identity permutation

The identity permutation, I(x), is defined formally as

I(x) = x

This permutation simply preserves the ordering of the input and is used to
define inverse permutations such as C1(x), the inverse exchange permuta­
tion, thus

or simply

3.3 Network topology

Having defined the characteristics of interconnection networks, and pre­
sented some formal routing functions, we now discuss their topology and
physical implementation.

An interconnection network can be depicted as a graph in which the
nodes represent switching elements and arcs represent physicallinks. Such
a graph is capable of describing the topology, but does not impart a great
deal of knowledge about the network characteristics. Diagrammatic rep­
resentations of network structures should not therefore be regarded as a
comprehensive notation for the description of interconnection structures,
although they are useful for the way in which they provide an immediate
visual representation of the network topology.

www.manaraa.com

30 Architecture of High Performance Computers - Volume II

In general, the input-output connections provided by a network may
be either physical or virtual. If the links are dedicated, serving just two
nodes, then the connections naturally represent a physical realisation of
the network routing function. For example, the ring-structured topology
depicted in figure 3.8 is a physical realisation of the shift permutation, 0:(x).
Here there is a unique arc in the graph for every instance of the routing
function. This type of network is known as a static network, and it can be
characterised by the fixed routing between nodes, the dedicated links and
the passive switching elements.

If the nodes between links are shared by several input-output connec­
tions, only one of which can be active at a time, then the network topology
supports virtual connections. The cross-bar switch, shown in figure 3.7, is a
good example of a network with virtual connections. The cross-bar realises

-9-= Switch Element

Input 0

Input 1

Input 2

· (N2 Switch

· Elements)

·
Input N-1

. . .
Output 0 Output 1 Output N-1

Figure 9.7 The cross-bar switch network

the routing function X, where

X(a) = b == --, (::Jc : X(c) = b)

Informally, X maps any a to any b if, and only if, it is not the case that there
exists another input c which also maps to b. There is no Ion ger a unique
path through the network for every instance of the routing function, and
hence there will be occasions when a cannot be routed to b. The routing
function X is non-deterministic, in other words if a and c both want to map

www.manaraa.com

Interconnection Networks 31

to b the routing function is not rich enough to decide which input maps to c
and which does not. Nor does the routing function describe what happens
to an input which cannot be mapped. These network characteristics are
generally implementation dependent. This type of network is known as
a dynamic network and can be characterised by the configurable routing
structure, the shared links and the active switching elements.

3.3.1 Statie networks

In a static network the connectivity between nodes is defined by the presence
of physicallinks, and this makes the choice of network topology heavily de­
pendent on the expected pattern of communication. The topology of static
networks can be eharacterised very simply in terms of geometrie dimen­
sionality. Thus, we can define zero, one, two, three and even n dimensional
networks, some examples of which are shown in figure 3.8.

Zero, one, two and three dimensional topology

The zero dimensional network is in fact a single network node, without any
links to other nodes, and is shown here solely for the sake of completeness.
It has a null routing function and no communication bandwidth. Increasing
the dimensionality to 1 produces a chain of nodes; effectively a bi-directional
pipeline. Linking the ends of the pipeline produces a simple two-dimensional
ring topology. In a ring structure the throughput, the average path length
between any two nodes, and the cost, are all proportional to N.

The topological 'dual' of the ring is the star network, and this has sim­
ilar performance characteristics to a shared bus structure. The number of
parallel connections is 1, the maximum distance between no des is 1 and the
cost is proportional to N.

Tree-structured networks have some useful properties, especially when
the problems being solved can be decomposed into hierarchies of activity.
The most important property is that the distance between any two nodes
is always less than

The rectangular mesh network is another two-dimensional network, and
is particularly suited to applications with highly localised inter-processor
communications. It can be thought of as 2(n + m) inter-linked ring net­
works (where N = nm), and can therefore be expressed in terms of shift
permutations. The number of possible data movement operations that can
take place in parallel is proportional to N; however, the maximum distance
between any two nodes is W.

If a network topology cannot be depicted without ares crossing, then
it is of three or more dimensions. Examples of three-dimensional static

www.manaraa.com

32 Architecture of High Performance Computers - Volume II

O-dimensional

o (Single Processing Element)

1-dimensional

~(Chain)

2-dimensional

3-dimensional

(Tree)

(Completely
Connected)

-{)---c:>---c>- (Rectangular Mesh)

Figure 9.8 Typieal statie networks

(3-Cube)

network topologies are the eh ordal ring, the eompletely eonneeted network
and the 9-eube.

Variations on the chordal ring can be devised that are equivalent to
square mesh networks with shifted wrap-around at the boundaries. This
can be verified by a simple pencil and paper exercise, and in fact formed the
basis for the ILLIAC IV interconnection network [BBK*68]. Such partially­
connected chordal rings have a maximum distance between any tWQ nodes

www.manaraa.com

Interconnection Networks 33

of VN - 1.
The 3-cube consists of eight nodes connected in a three-dimensional cube

structure, and is actually a particular instance of a more general network
topology known as the binary k-cube [Pea77].

The binary k-cube

A binary k-cube, often referred to simply as a 'hypercube', connects N = 2k

network nodes in the form of a cube constructed in k-dimensional space.
The corners of this cube represent the nodes, and the edges represent the
inter-nodal connections. More formally, if the nodes are numbered from
o to 2k - 1, no des whose binary numbering differs in exactly one position
have connections between them. Figure 3.9 shows how binary k-cubes are
constructed far k in the range 0 to 4.

o 10 K=O

K=1 K=2

K=3

K=4

Figure 9.9 Constructing binary k-cubes

The binary k-cube therefore has k routing functions, Ci {O ::; i ::; k-1},
one routing within each dimension, defined thus

Informally, for each dimension either an exchange permutation (Ei) or an
identity permutation (I) is applied to x in order to establish a route from any
sour ce to any destination node. A route from any source to any destination
label can be found by starting at the source node and then comparing each
bit in the source and destination labels in turn. If the bits are the same,

www.manaraa.com

34 Architecture of High Performance Computers - Volume II

then the identity permutation is applied to the source label and the route
is not extended. If the bits are different, then the exchange permutation is
applied to the source label, and the route extends along the link connecting
the current node to a new node with a label equal to Ei (current label).
Such a route is illustrated in figure 3.10. It is also apparent that since
the maximum number of bits required to identify n processors uniquely is
k = f}og2 n 1 the path length between an arbitrary pair of nodes is at most
k.

100

I
I

I
C 3 (C2 (C , (S))) I

=D I
\
\

\

;'

I
\ I
" ;'

C 2 (C , (S))

000

........

110 111

101

[)----- -----(:) 011
010

/
;'

." --- -
C , (S)

S= {001 J

D= (100J

Figure 9.10 Routing in a binary k-cube network

It is immediately apparent that the binary k-cube has a very rich inter­
connection structure, with a total of k2k - 1 bidirectional connections, and
k communication links per node. One possible problem, which could limit
the number of nodes in an k-cube network, is the number of communica­
tion links required per node, and hence the physical complexity of the whole
network. In fact, it is the length of the interconnecting wires which poses
the most serious problem for networks with large values of k. This can be
shown by examining the rate of growth of the volume of the network.

The rate of growth of the inter-nodal distances in a binary k-cube de­
pends on the length of one side of the machine. Since most machines are
constructed physically in three-dimensional space, one side of a machine
must have length which is 8(N1/ 3). Consequently, the time delay associ­
ated with the transmission of messages across the most significant dimension
of the network will also be equal to 8(Nl/3). If the system is synchronous
then the clock speed of the machine must decrease in proportion to this in­
creasing delay; alternatively, if each processor runs at 0(1) instructions per
second then the interval between each communication event must increase in

www.manaraa.com

Interconnection Networks 35

InputOÜ J3- 0"",,,

Input1~ &- Output1

InputN-1~ ~ OutputN-1

Figure 9.11 Single-stage dynamic network

proportion to the increased transmission delay. The net effect of increasing
wire length is that the communication bandwidth per node decreases as the
system becomes larger. This is essentially a problem of physical scalability,
and is discussed with reference to multiprocessor systems in section 6.2.2.

The Cosmic Cube [Sei85] and Mosaic [Sei83] experiments carried out by
Seitz at Caltech are typical of the kinds of architecture that can be con­
structed using binary k-cube topology, the commercial derivative of which
is outlined in section 8.3.

3.3.2 Dynamic networks

A serious disadvantage of static networks is their lack of flexibility, and
hence the need to provide physical links to match an apriori notion of the
required pattern of communication. Dynamic network topologies normally
support arbitrary communication patterns, and are therefore designed on
the basis of their comparative throughput, cost and switching methodology
rather than their physical structure.

Dynamic networks can be divided into two classes: single-stage and
multi-stage. A single-stage dynamic network, depicted in figure 3.11, con­
sists of a number of input demultiplexers (ID) and a number of output
multiplexers (OM) connected according to a fixed permutation. A desired
set of paths through the network is established by applying suitable control
signals to the ID and OM switches. Under certain circumstances it may not
be possible to establish a path to the desired destination in a single pass
through the network, and the data being transmitted will be sent through
the network two or more times. Such a network is known as a recirculating
network.

www.manaraa.com

36 Architecture of High Performance Computers - Volume II

The number of recirculations required to implement a particular rout­
ing depends upon the the connectivity of the network, and this leads to a
trade-off between connectivity (cost) and routing time (l/bandwidth). At
the extremes of this trade-off are the cross-bar switch, the most highly con­
nected and costly single-stage dynamic network, and the shared bus, the
least connected and cheapest form of single-stage dynamic network.

3.3.3 Multi-stage networks

When the required permutation for all input-output connections· can be
specified formally as a single homogeneous function a static network, such
as a binary k-cube, can be used. However, when an arbitrary permutation
of input-output connections is required a more flexible structure is required.

The Benes network

As we have seen, the cross-bar switch is capable of connecting fully an
arbitrary input-output permutation but at an impractically high hardware
cost. In 1965 Benes devised a method of reducing an N x N cross-bar switch
to two N/2 x N/2 cross-bar switches and two N-input exchange switches
[Ben64], as illustrated in figure 3.12.

Input 0 Output 0

Input 1 Output 1

InputN-1 Output N-1

Figure 9.1E Benes reduction 0/ the cross-bar switch

The resulting N /2 x N /2 cross-bar switches can be similarly reduced,
and through this recursive trade-off between complexity and network la­
teney a fuH eonnection network can be produced at a significantly lower

www.manaraa.com

Interconnection Networks 37

cost than a fun cross-bar switch. This network, illustrated in figure 3.13,
is constructed entirely from 2-input 2-output switch-nodes, arranged as a
sequence of stages connected by inverse shuffie permutations l .

Inputs Outputs

0 0

2 2

3 3

4 4

5 5

6 6

7 7

Figure 3.13 An 8-way Bene~ network reduced to 2 X 2 cross-bar switches

The input-output mappings performed by the 2 x 2 switch-nodes may
be either strict permutations of the inputs, or may include the upper and
lower broadcast mappings tl;(x) and I;(x), where

and

A general 2 x 2 switch-node routing function, E;, can therefore be defined as
a choice of one of the four switch settings illustrated in figure 3.14, expressed
formallyas

Ei (x) = {Ei I I I tl; I/i }(x)

If only strict permutations are allowed, i.e. only Ei(X) and I(x), then a
single control-bit per switch-node is all that is required to configure the
network. If upper and lower broadcasts are allowed, then two control-bits
per switch-node are needed. A Bene~ network using strict permutation
switches is capable of connecting all N! permutations of N-inputs, and if
upper and lower broadcasts are supported then all NN well-defined input­
to-output mappings can be connected. The Bene~ network is known as a
rearrangeable network since the switch settings can always be rearranged to
accommodate any change of input-to-output mapping.

1The inverse shuflle, o--l(Z), is simply a. right-circular rotation of the binary repre­
sentation of z as opposed to a. left-circular rotation for the ordinary shuflle permutation
o-(z).

www.manaraa.com

38 Architecture of High Performance Computers - Volume 11

E; ==:B=:
:[J :

U; --=EJ=:
I; :I~I :

Figure 9.14 Generalised exchange switch mappings

Shuffle-exchange networks

In order to provide full connectivity the Bene§ network requires 210g2(N)+1
stages, each with N /2 switch-nodes. However, it is possible to reduce the
cost of a multi-stage network still further by using a dass of networks, which
are not fuH connection networks, known as shuffle-exchange networks. In
general, shufHe-exchange networ ks consist of a sequence of log 2 (N) exchange
permutations interspersed with shufHe or butterfly permutations.

On first inspection the following discussion on shufHe-exchange permuta­
tions may appear to be simply a notational convenience, but it is important
to understand how a sequence of shufHe and exchange permutations can
together form a useful network. The key to understanding multi-stage per­
mutation networks is to consider the effect each successive permutation has
on the label of an object in passage through the network. Assume that S
is the label of an object entering the network, and D is the label of the
destination of that object. We associate a temporary label L with the ob­
ject, and this is initially set to S. If we can modify L by a sequence of
permutations so that it becomes equal to D then the object will arrive at
its destination.

Since the E1 permutation provides us with the choice of inverting the
least significant bit of the input label or leaving it intact, it is possible to
use the E1 permutation to make the least significant bit in L equal to the
least significant bit in D. This is the basic step in converting from L to D,
and the choice of (1 or I permutation determines the switch-node setting in
the general exchange box of figure 3.14. The next step is to expose the next

www.manaraa.com

Interconnection Networks 39

bit in L to the El permutation, and this is done most simply by shifting L
by one bit. This is directly equivalent to a perfect-shufHe permutation on
all labels L in the range 0 to N, as shown for N = 8 in figure 3.2. After
n = log2 N applications of the shufHe and exchange permutations all bits in
L will have been changed, and L will be equal to D. As a direct consequence
of this, the object located at label L will have been routed to the output
port identified by D, and the network will have performed its function.

A number of important multi-stage shufHe-exchange networks have been
devised, and of these the omega, the indirect binary n-cube and the banyan
networks are discussed briefly. The banyan network of Goke and Lipovski
[GL73], denoted by the composite routing function Yn , can be defined as a
sequence of general exchange and butterfly permutations, thus

In this network there are n = log2 N stages each consisting of N /2 active El
no des, with successive stages connected by passive ßi permutations. This
is illustrated in figure 3.15 wh ich depicts a three-stage (8-input, 8-output)
banyan network.

Inputs E, E, E, Outputs

0 0
1 1

2 2
3 3

4 4
5 5

6 6
7 7

Figure 9.15 The banyan network

The n-stage Omega network of Lawrie [Law75], denoted by the com­
posite routing function On, is defined as a sequence of shufHes and general
exchange permutations, thus

Lawrie's O-network uses switch-nodes with upper and lower broadcast
capability, and it is worth noting that all stages in the network are identical.
However) it can be seen from figure 3.16 that the O-network is incapable of

www.manaraa.com

40 Architecture of High Performance Computers - Volume II

establishing connections from nodes 4 to 4 and 6 to 5 simultaneously. For
this reason the O-network is a blocking network. In principle all multi-stage
networks with log N stages are blocking networks, although techniques for
overcoming blockages vary between implementations.

Inputs E, E, E,
Outputs

0 0
1 1

2 2
3 3

4 4
5 5

6 6
7 7

Figure 9.16 The omega network

The indirect binary n-cube suggested by Pease [Pea77], wh ich we denote
Rn, can be defined formally as

Rn = E1ß2EIßS" . ßnEIU;;l

The indirect binary n-cube, sometimes known simply as the multistage cube,
is very similar to the O-network although the pairs of connections which it
is unable to connect are different from those of the O-network. The indirect
binary n-cube is illustrated in figure 3.17.

Although the shuffie-exchange dass of networks are blocking networks
they still have a rich interconnection structure, capable of supporting a large
number of simultaneous connections, at a relatively low cost. Most high­
performance computers which incorporate a multi-stage network use some
form of shuffie-exchange switch, for example the Bolt Beranek & Newman
Butterfly machine described in section 7.4.

Switch control mechanisms

A fuH connection network is one which is capable of realising every possible
set of input-output connections. Blocking networks are not fuH connection
networks, but networks like the Bene!l and the cross-bar are fuH connection
networks. One possible problem with these types of network is how one
generates the control signals for every possible permutation, since the ad­
dition of a new connection to an existing configuration of a Bene!l network
may require existing connections to be re-routed.

www.manaraa.com

Interconnection Networks 41

Inputs
E, E,

Outputs

0 0
1 1

2 2
3 3

4 4
5 5

6 6
7 7

Figure 9.17 The indirect binary n-cube network

Given an arbitrary mapping and a full connection network, algorithms
can be defined which analyse the mapping and factor it into a sequence
of permutations [GS82], yielding as a result the control signals required to
configure a set of switch-nodes. However, the best known algorithm for
factoring an arbitrary permutation takes O(log4 N) steps [OT68] compared
with a total transmission latency through a typical multi-stage network
of 0 (log N). Such techniques can therefore only be used to pre-analyse
known network configurations in advance of their application, and this is
the approach used in the IBM GFll Array Processor [BDW85] which uses
a modified Bene!! network known as the 'Memphis Switch'.

The main difficulty with pre-analysis is that each permutation requires
O(N log N) bits of control information, and the network may be capable of
configuring as many as N! permutations. Needless to say, such quantities
of control information could never be stored in full, and only a subset of
the full set of permutations could be supported. This kind of switching is
essentially static, and does not solve the problem of simultaneously moving
large numbers of data items to unpredictable destination addresses.

The alternative to a centralised control strategy is a distributed control
strategy in which each item of information is tagged with its destination
address. Tags provide enough information to enable each switch node to
compute its local switch setting dynamically, and hence then obviate the
need to perform any pre-analysis. This introduces the problem of dealing
with routing conflicts which can occur within a switch node, a topic which
is discussed in more detail in section 7.4.4.

www.manaraa.com

42 Architecture of High Performance Computers - Volume 11

3.4 Sununary

In this ehapter we have introdueed the theory behind intereonnection net­
works without looking in any detail at how they are implemented in prae­
tice. This is eovered in later seetions whieh diseuss individual maehines
ineorporating these types of strueture. There are two major eategories of
intereonneetion strueture: statie and dynamie, and eaeh is appropriate for
a different class of parallel system. We have seen how permutations are
important in the design of multi-stage networks, and how they can be com­
posed to create standard multi-stage networks like omega, banyan, and the
indirect binary n-cube.

Intereonnection structures are of fundamental importance in highly par­
allel systems. It is easy to replicate processing resourees, and it is easy to
replicate memory resources. However, to implement a high performance
arehitecture through a replication of processing and memory resourees an
effieient method of connecting these components together in parallel is es­
sential. This me ans providing an interconnection structure which supports
a number of parallel input-output connections, preferably one where the
number of input and output connections is not constrained by logical, elec­
tricalor physical limitations.

www.manaraa.com

4 Practical Array Architectures

In each category of computer architecture, be it parallel or sequential, there
are often one or two machines which embody a large majority of the princi­
pal techniques for that category of machine. In this text we have chosen to
use the ICL Distributed A:tray Processor (DAP) rmd the TMC Connection
Machine as examples of SIMD processor arrays, as they have particular
significrmce, by virtue of their position in the chronology and taxonomy of
these types of machine. The DAP, for example, was the first commercial
exploitation of this style of architecture, a style which crm be traced back
many years. In particular, the design of the DAP owes much to the pioneer­
ing work carried out on the SOLOMON computer [SBM62], and later on
the ILLIAC IV computer [BBK*68]. The Connection Machine represents a
more recent evolutionary step embodying the integration of several process­
ing elements on a single chip, rmd the consequent production of a massively
parallel system. The target applications, and programming language, of
the Connection Machine are also adeparture from the conventional view of
array processors as providers of high performance numerical facilities, rmd
this is explored in more detail in the following chapter.

4.1 The ICL DAP

The DAP enjoyed moderate commercial success and extensive use by the
scientific research community, particularly in the U.K. The success and
architectural significrmce of this machine are due to a number of innovative
features. For example, interactions between the array control unit and the
two-dimensional array of processing elements crm occur in either of the
two dimensions. The architecture of the DAP also permits problems larger
than the physical processor array to be processed without resorting to time­
consuming overlay techniques.

The low cost of the DAP can be partially attributed to the use of conser­
vative technology, although the method of connecting the DAP to its hast
processor certainly played an important part as well. The memories of the
DAP processing elements are configured so that they appear, from the ICL
2900 host, to be simply an additional memory segment. The host therefore
has fuH read/write access to the distributed memory within the processor
array.

The architecture rmd technology of a machine should never be consid-

43

www.manaraa.com

44 Architecture of High Performance Computers - Volume II

ered in isolation; more often than not technology is a limiting factor for
the computer architect, effectively dictating what can or cannot be im­
plemented at a reasonable cost. Occasionally, new technology gives rise to
new architecture, rendering previously unimplementable structures feasible.
Some of the most successful high-performance machines, particularly those
designed by Seymour Cray, have been supported by such technology-driven
advances. The DAP however is different, and is one of the most technology­
independent of all high performance architectures covered in this book. This
stems from the relatively low dock rate of 5 MHz, and the use of massive
data-parallelism as a means of achieving high performance in preference to
using very high speed logic and a pipelined architecture.

4.1.1 System architecture

The DAP, and its ICL 2900 host, together form a dual-processor system.
The interconnections between the host, the array and their peripher als is
illustrated in figure 4.1. It can be seen that the host has equal access to

Peripherals

Figure 4.1 DAP system architecture

ordinary memory, via the Store Multiple Access Controller (SMAC) , and
the memory of the processor array, via the DAP Access Controller (DAC).
The execution of array instructions takes place under the supervision of
the Master Control Vnit (MCV), and in parallel with execution of host
instructions. The host steals unused DAP memory cydes when access is
required.

The 2900 has a virtual memory architecture, enabling the physical DAP
memory to be allocated anywhere within the virtual address space of a user
of the host machine. The DAP memory then behaves as if it were a locked-

www.manaraa.com

Practical Array Architectures 45

in segment of virtual memory, and normal access permissions (read, write,
execute) can be specified.

Input and output from the DAP are controlled by the host, and ordinary
memory can be made available for the storing of incoming or outgoing DAP
memory images in order to maximise the utilisation of the array.

4.1.2 Array architecture

The DAP unit as a whole, comprises five major functional parts, the Proces­
sor Array, the DAP Access Control Unit, the MCU Registers, the Instruc­
tion Issue Logic and the Array Control Unit. The relationships between
these units are illustrated in figure 4.2.

To
Host

PC

Array
Control

Figure 4.2 Organisation 0/ the DAP

Instruction
Buffer

(60x32
wordsl

The primary route linking components within the DAP is the column
highway. This 64-bit connection provides a mechanism for moving infor­
mation between the host interface (DAC), or any of the DAP registers, and
any row of Processing Elements (PEs) in the array. Each PE in the array
is linked to one bit of the column highway and one bit of the row highway.
This maps one 64-bit word, as seen by the host, into 64 single-bit entries in
each row of processing element memories. The row highway enables 64-bit
words to be transferred between the MCU registers and columns of PEs in
the DAP array. Similarly, the row highway provides two-dimensional sym­
metry for data movements into and out of the array. The row and column
highways, and the inter-PE connections are illustrated in figure 4.3.

www.manaraa.com

46 Architecture of High Performance Computers - Volume II

Column Data Lines

Figure 4.9 PE interconnections and MeU highways

Each PE has input connections from its four nearest neighbour proces­
sors in the North, South, East and West directions. The mechanism for
dealing with the connections at the perimeter of the array is explained in
section 4.1.4. An important feature of the DAP, from the manufacturing
and construction point of view, is the simplicity and regularity of the array
of PEs. The relatively low clock speed means that the layout of the process­
ing elements is not critical and, by a careful mapping of the two-dimensional
array on to printed circuit boards, connections between nearest neighbours
can easily be kept short.

The DAP Access Control Unit interfaces the 2900 host to the column

www.manaraa.com

Practical Array Architectures 47

highway of the DAP array, allowing the host aeeess to the memory of the
proeessor array in units of 64 bits. The least signifieant 6 bits of the double
word address from the host seleets one row of PEs, and the memory assoei­
ated with eaeh one eontributes a single data bit to the read or write eyde.
Eaeh proeessing element has 4096 bits of memory organised as a 4096 x
I-bit store. The mapping of bits in the array to bits in the host address
space is illustrated in figure 4.4. Thus, a 64 x 64 DAP array has a total

o

2
r-~--~~---------------4--~

3
r-~-+--~-------------+--~'

4

4095

t
BitO Bit 63

64 x 64 Array af
Baalean Arithmetic
Units

Ward 127

Array af Bits
(256 kwardsl

Figure 4.4 Three-dimensional structure 0/ the DAP store

storage eapaeity of 256 K Words, or 16 M bits, with one PE assigned to
eaeh vertieal segment of 4096 bits.

www.manaraa.com

48 Architecture of High Performance Computers - Volume II

The instruetions whieh make up a DAP program are stored in the array
memory and, as each instruetion is 32-bits wide, two instruetions ean be
stored per row. This means that two instructions are fetehed every time an
instruetion feteh eyde oeeurs. Within the instruction issue logic there is an
Instruetion Buffer, and this is eapable of holding up to 60 instruetions. It
is used solely during the exeeution of Ioop instruetions, when it is known
that a group of eontiguous instruetions is going to be exeeuted more than
onee.

4.1.3 PE architecture

The most striking feature about the proeessing elements in the DAP is the
faet that all operations take plaee on single-bit operands. This leads to a
very simple PE architecture and permits the eonstruetion of systems with as
many as 4096 PEs. A simplified view of the internal arehiteeture of a single
PE is shown in figure 4.5. Eaeh proeessing element eonsists of a single-bit
adder, an input multiplexer, an output multiplexer and a 4096 x 1-bit store.
The ALU eonsists of three one-bit registers, the aceumulator Q, the earry
register C and an actitJity bit A. The aetivity bit is used for loeal enabling
or disabling of eertain aetions within the PEs, thus permitting a subset of
the array to take part in whatever eomputation is in progress.

The input multiplexer seleets data either from the output of one of the
four nearest neighbours or from the loeal memory, depending on the in­
struetion being exeeuted (see seetion 4.1.4). The output multiplexer seleets
whieh souree of information is used when writing to the Ioeal memory. The
options include the output from the loeal adder and the row and column
highways.

The single-bit adder performs full addition of the aeeumulator and the
seleeted input, with an option al earry input. The se lee ted input may be
eomplemented before addition, enabling subtraetion and logical inversion
operations to be implemented. The earry-in to the single-bit adder may
eome from one of two sourees, either the loeal earry register or the earry­
out of the Eastern neighbour, depending on the operating mode of the
array. This ehoice permits the DAP to perform word-arithmetie in two
quite distinet ways, either bit-serial (word-parallel) or bit-parallel (word­
serial). These two modes of operation are illustrated diagrammatieally in
figures 4.6 and 4.7.

The normal mode of arithmetie in the DAP is bit-serial word-parallel. In
this mode word values are assumed to be stored vertieally as vectors of bits
in the z dimension of figure 4.4. A full word operation is programmed out
as a DO loop, eonsisting of n iterations, for n-bit words. Let us take as an
example the addition of 64-bit integers, stored as the bit-veetors represented
by .G, l!. and~. To perform .G + l!. ---+ ~ we must index through these three bit-

www.manaraa.com

Practical Array Architectures

From MCU
Highways

Mesh­
Network ..­
Output

----------~~-------- ---~~ThMCU

Boolean Processor
r------ ------,
I

: 0 G 0
, , ,

Highways

Ripple ,
Carry ~ ~ Carry-in from

to ': I I I, Neighbour
Neighbour . 1-bit Adder .

1 ,
'-------- ______ 1

Mesh-Network Inputs

Figure ,{S DAP processing element architecture

49

vectors, adding the two operands in bit-serial fashion, and storing the carry
at each stage in the C register. This sequence of operations can take place
in up to 4096 PEs simultaneously. Therefore, whilst the time to perform
a single Integer Add takes many clock cydes, the massive parallelism can
nevertheless produce very high overall processing rates.

An alternative method of performing word arithmetic, which issup­
ported by the DAP system software, involves configuring each row of PEs as
a 64-bit ripple-carry adder. This permits words stored in the x-dimension to
be operated on directly with a guaranteed carry-propagate speed of at least
four bit-positions per dock period. Under this scheme the three operand
addresses are scalar values, addressing a single bit in each row memory.
Although this method of processing is essentially word-serial within each
row, the fact that there are 64 rows means that a moderate amount ofword
parallelism also occurs in this mode.

www.manaraa.com

50

,
'"

Architecture of High Performance Computers - Volume II

/ / .r---r'"

/ " I I , I
, I I

: t "
I
I
\
\
\

\
\

\
\

\
\

C } Word C

c+63

• All PEs perform the
same bit-serial
arithmetic on three
vectors of bits

• MCU provides global
'add' instruction and
addresses for a, band c

Figure 4.6 Bit-serial word-parallel mode 0/ arithmetic

It is possible to compare the performance of these two processing modes,
and the results for such a comparison are shown in table 4.l. It is dear
that the bit-serial word-parallel mode yields a much greater maximum per­
formance level than the bit-parallel word-serial mode, and this is due to
the relatively slow carry-propagate speed compared with the cyde time of
the carry-save technique used in the bit-serial mode. However, the quoted
performance figures are for maximum processing rates, and to achieve the
maximum processing rate in bit-se rial mode requires 4096 concurrent ad­
ditions. Conversely, the bit-parallel mode of operation, whilst achieving
a meagre 25 MOPS, requires only 64 concurrent additions to achieve this
level of performance. Therefore, the final column in table 4.1 indicates how
many concurrent integer additions are required to achieve 1 million integer

Table 4.1 Comparison 01 DAP processing modes

Word Bit Max. rate Word parallelism
parallelism parallelism (MOPS) per MOP

4096

64

1

32

213

25

19.2

2.56

www.manaraa.com

Practical Array Architectures

Carry-in
(zero)

• Add with Carry Propagate

4095~-~

Carry-out

Word a Address

Word bAddress

Word c Address

Figure 4.7 Bit-parallel word-serial mode 0/ arithmetic

additions per second for these two main operating modes.

4.1.4 Instruction set

51

There are several important features of the DAP architecture which heavily
influence the design of its instruction set. The most notable of these are

o Bit-serial arithmetic

o Two-dimensional array topology

o The MCV registers and the row/column highways

Coupled with these hardware features is the predominance of FORTRAN
within the scientific computing community. In FORTRAN the primary
control construct for coding iterative algorithms is the DO loop, and in
order to eliminate loop-control overheads the DAP instruction set provides
a special DO loop instruction.

Normally, the instruction issue logic fetches instructions from consecu­
tive DAP locations, two at a time, and executes them. Both the fetch and
execute cydes take 200 ns (for a 5 MHz dock) and therefore each sequen­
tial instruction takes on average 1.5 cydes. When a DO loop instruction is
encountered, a field in the instruction format identifies how many instruc­
tions there are within the loop and these instructions are assumed to follow.
When these instructions are fetched on the first iteration through the loop
they are placed in consecutive locations within the Instruction Buffer, as

www.manaraa.com

52 Architecture of High Performance Computers - Volume II

31

Data Register

MCU Broadcast
Address Register

Address Increments or
Decrements (tor

addressesl

o

or
Shitt Count

either
Address Ottset

or
Geometry Specitication

Figure ,1.8 DAP instruction format

weH as being placed in the Instruetion Register. On the seeond and sub­
sequent iterations through the loop, no instruction fetch cydes are needed,
thus saving an average of 1 eyde for every two instruetions inside the loop.
The size of the Instruction Buffer limits the length of buffered DO loops
to 60 instructions. The DO loop format also eontains a Count field, which
may be modified by the contents of an MCU register identified in the Mod­
ifier Register field. This Count value determines the number of iterations
through the loop.

The memory addresses used to access operands for instruetions inside
DO loops may be auto-incremented or auto-decremented, by one, on each
iteration. This makes for relatively easy indexing through a vertical bit­
vector, and simplifies the implemention of bit-serial word arithmetic. The
fine control which the programmer has over the bit-level realisation of word
arithmetic is seen by many as a positive feature of the DAP instruction set.
It means that highly optimised macro sequences can be generated, for ex­
ample to implement variable word-Iength arithmetic or very high precision
floating-point operations.

The DAP instruction format, illustrated in figure 4.8, eontains a 9-bit
Operation-Code field and this, together with an Inversion bit for selecting
either a true or inverted input operand, identifies the instruction to be
executed. The MCU Register field identifies any data register wh ich may
be required by the instruetion, and the Modifier Register selects one of the
MCU registers to be used either as a modifier for memory addressing or as
a source of shift instruction parameters. The movement of data between

www.manaraa.com

Practical Array Architectures 53

DAP memory and the MCV registers is also supported in the instruction
set, and for these instructions one row or column must be specified as well as
an address within the 4096-bit memory space. This is achieved by providing
a 7-bit rowjcolumn identifier field and a 7-bit address field within the 32-bit
instruction format. Both of these fields can be optionally modified by the
contents of an MCV Modifier register, as illustrated in figure 4.9.

Another group of very useful instructions are those which perform data
movement operations between processing elements. These operations make
use of the two-dimensional square grid of inter-processor links to transfer
data between the Q registers of adjacent PEs. The shift instructions move
64 x 64 bits of information in parallel, in any one of four directions, and
through relative distances of up to 64 grid positions. Shift instructions also
specify what happens at the boundary elements of the array, and here two
options are available in each dimension. Either the boundary inputs are set
to zero and boundary outputs are discarded, or else the boundary inputs
are taken from the boundary outputs within the same dimension. Hence,
East may be connected to West and North may be connected to South.
These four geometries and their relationship to the instruction format are
illustrated in figure 4.10.

The DAP approach to scientific software bears some similarity to the
approach taken by Texas Instruments in their Advanced Scientific Computer
(TI-ASC), described in volume I section 4.3. Both machines support the
FORTRAN DO loop in their respective instruction sets to varying degrees of
sophistication. The TI ASC provides support for triple-nested loops wh ich
are iterated sequentially. In comparison the DAP has a single-nested loop
which evaluates all iterations of a double-nested 64 x 64 loop (in the x and
y dimensions) in parallel.

4.1.5 Performance

In this section we look at the performance of the DAP in several ways.
At the simplest level we examine the raw speed of its component parts
and compare them briefly with other high performance scientific machines.
This produces a set of peak performance figures, but does not advance any
insight into how weIl the machine will perform on a real problem. This is
remedied by using the simple analytical performance model introduced in
section 2.2 to predict the performance, firstly of isolated array operations,
and secondly of pro grams in general.

It is possible to characterise the raw performance of the DAP in terms
of the bandwidth of the distributed memory, the serial arithmetic rate and
the rate of data manipulation through the processing element network. The
dock period of the production DAP is 200 ns, and in this time it is capa­
ble of performing one memory cyde in each processing element memory.

www.manaraa.com

54 Architecture of High Performance Computers - Volume II

OpCode

9

MCU

3

Modifier
Register

I I 0
N N E
V C Address C Row/Col.

3 7
111

7

MCU Registers 63

(Data Register)

... I--.....;._.Transfer to/from
DAPMemory

7'--_____ -+ ___ ----'

Only Permitted
onRow

Operations

Address within
PE Memory

Row/Column
Number

Figure -1.9 Word address modification in the DAP array

www.manaraa.com

Practical Array Architectures

Direction

I
I Self, north, south, east, west J

Plane

Vertical
Cylinder

7

I Direction and I
. Geometry .

\
Geometry

Horizontal
Cylinder

7

Shift
Count

Figure ./.10 Configuration options Jor DAP shiJt instructions

55

Each memory operation involves one bit, and therefore the raw memory
bandwidth is

4096 .
2 x 10-7 = 20.48 GbltS/S

This is four times the 80 MWord/s effective memory bandwidth of the
CRAY-l, although in fairness the CRAY-l also has a very fast set of vector

www.manaraa.com

56 Architecture of High Performance Computers - Volume II

Table ~.2 Instruction timinQs[or the DAP

Processing rate
Operation Time (/lS) (MOPS)

Z+-X 17 241

Z+-X*S 40-130 32-102

Z +- X 2 125 33

Z+-X+Y 150 27

Z+-VX 170 24

Z+-X*Y 250 16

Z +- X/Y 330 12

Z +-1 Z 1 1 4096
4096

S +- I: 280 175
i=l

I+-J+K 22 186

registers which provide all the operands for the computational units. The
CYBER 205 has a memory bandwidth of 200 MWord/s per Pipe, and hence
a 2-Pipe CYBER 205 has 25% more memory bandwidth than the DAP.
This is a fair comparison since the CYBER 205 architecture implements
memory-to-memory vector operations.

Arithmetic performance in the DAP is heavily dependent on the chosen
word length, w; addition and subtraction requiring 0 (w), and multiplication
requiring O(w2) micro-cycles respectively. According to Reddaway [Red73],
integer addition takes 3w + ~ cycles, where ~ is a small constant value,
and fractional integer multiplication takes

w (3w + 13)
2

cycles. Floating-point operations require extra cycles due to the exponent
arithmetic, mantissae alignment and result normalisation. Table 4.2 shows
the timing, and resulting processing rates for a representative sampie of
fixed and floating point operations, taken from [Red79]. All operations are
in 32-bit precision and are hand-crafted, assembler-coded system routines.
The X, Y and Z values are real arrays containing 4096 elements, S is areal
scalar value and I, J, and K are integer arrays containing 4096 elements.

Several points are worth noting from these figures. Firstly, because bit-

www.manaraa.com

Practical Array Architectures 57

serial algorithms for transcendental functions are very different from their
equivalent algorithms on bit-parallel machines we find that, for example,
the time to compute the square root of areal number is less than the
time to compute the product of two real numbers. The implementation of
certain functions is trivial; for example, computing the absolute value of
4096 real numbers takes only 1 J.Ls thus yielding a burst processing rate of
4096 MOPS. The technique of optimising at the bit level is exemplified by
the :L operation which, instead of taking 10g2 (4096) x 150 (i.e. 1650) cydes,
takes only 280 cydes.

These figures are all based on bit-serial arithmetic. As we have outlined
earlier, bit-parallel arithmetic is also possible on the DAP, although the
peak processing rates are much lower and the array is much less flexible in
this mode.

A major feature of the DAP architecture is the two-dimensional PE
interconnection structure. This structure is capable of shifting an array
of 64 x 64 bits, held in the Q registers at a rate of one shift per dock
period, exduding instruction startup overheads. Hence, to move a bit of
information from one memory to another takes

x+y+A

dock cydes, where x and y are the relative displacements of the source and
destination memories within the array and A is a small overhead for in­
struction fetch and memory read/write cydes. The grid of interconnections
and the Q registers together form a parallel switch with a peak throughput
of 4096 bit position transfers per dock period, or 20.48 G bit-positions/so
It is also possible to use the row and column highways to move any single
row or column of 64-bits into an MCU register, or to move the contents of
an MCU register into one or all of the rows or columns of the array. These
data transfer operations can be carried out at a rate of one every 2.5 dock
periods. This is an extremely powerful mechanism, as it permits the rows
and columns to be selected, exchanged or broadeast to the whole array very
rapidly.

The performance of the DAP on real pro grams ean be gauged by mod­
elling the instruction execution rate as a function of the parallelism within
the application. This was done in chapter 2 for a generie SIMD array pro­
cessor, and the parameters of the model were chosen to be the same as the
parameters of the DAP. Consequently the throughput and effideney curves
in figures 2.7 and 2.9 refer to the DAP.

4.1.6 The DAP-3

The DAP arehitecture was revived reeently, when a company called Active
Memory Teehnology (AMT) designed a new version ofthe DAP using VLSI.

www.manaraa.com

58 Architecture of High Performance Computers - Volume II

This maehine, known as the DAP-3, consists of a 32 X 32 array of processing
elements similar to the processing elements in the original DAP. The dock
speed of the DAP-3 is expected to be between 80-100 ns. This machine is
physically much smaller than the original DAP, being housed in a relatively
smaIl desk-height endosure, and is hosted either by a MicroVAX or a Sun

workstation.

4.2 The Connection Machine

The designers of most of the major and influential high performance ar­
chitectures each had a particular motivating philosophy which underpinned
their design. For example, the philosophy of IBM 8/360 is one of software
compatibility aeross a wide performance range. This resulted in designs at
the top-end of the performance spectrum which incorporated features that
were transparent to software (pipelining and data-forwarding). Cray ma­
chines, on the other hand, have a design philosophy cent red around intensive
numeric calculations. Consequently, their machines aIl use vector pipelines
coupled closely to a set of very fast vector registers in order to minimise
startup times. The design teams for these maehines made decisions based
on their collective understanding of what constitutes an 'efficient' comput­
ing machine. Roughly speaking this me ans getting as many instructions
as possible past the control point per second for as low a cost as possible,
whilst satisfying numerous secondary design criteria such as physical size,
power consumption, product-line compatibility, and so on.

Connection Machine design philosophy

The design philosophy of the Connection Maehine [HiI85] sets out to chal­
lenge the conventional view of what constitutes an efficient computing ma­
chine, by shifting the emphasis from an obsession with instruction cyde
times to a more realistic consideration processor-memory bandwidth re­
quirements. In order to process information decisions must be made. In
effect eaeh decision produces one bit of information. If one analyses a com­
plete computation at the maero-Ievel it is obvious that to make faster com­
puters one must either make the time for each decision shorter or make a
number of decisions at the same time. Conventional maehines generally take
the first option, not by choice but because the programming model they are
pledged to support requires a certain type of machine. The Connection Ma­
chine, in common with all 8IMD-array machines, takes the second option
and couples a novel parallel hardware structure with a new programming
style.

The philosophy of the Connection Machine philosophy is one of remov­
ing the division between processor and memory by placing the processor

www.manaraa.com

Practical Array Architectures 59

in the memory to create a cell which is then replicated as a unit to create
large and highly parallel systems. This form of logic-in-memory machine is
no different in principle to the ICL DAP, or SOLOMON for that matter.
What the Connection Machine emphasises is the programmability of the
connections between processing cells. In this section we describe the hard­
ware structure of the Connection Machine, and in section 5.1.2 we describe
a parallel version of Lisp for the Connection Machine and look at a typical
application.

4.2.1 System architecture

The prototype connection machine, known as CM-I, is manufactured by
Thinking Machines Corporation (TMC), and its primary design goals are
to test out the principles of connection machine architecture, and the CM-I
is only one of many possible implementations of a connection machinei.

The system level architecture of CM-I is illustrated in figure 4.11, wherein
the similarity with the DAP (and most other SIMD array processors) is
clearly visible. The array of processing elements, comprising a simple
boolean processor and some local memory, is seen by the host machine
simply as an extended region of memory. The host computer directs the
connection machine to implement parallel portions of code, and in this re­
spect it differs from the DAP which has an instruction processor built into
the array unit. The CM-I host broadcasts a sequence of instructions to
the array micro-controller, which interprets the instructions and broadcasts
an appropriate sequence of micro-instructions to the array of PEs, for each
received host instruction.

The processor-memory cells, like those of the DAP, are so small and
slow that individually they cannot perform meaningful computations. In
CM-I, running CM-Lisp, these cells are linked together in data-dependent
patterns called active da ta structures. Low-Ievel operations on active data
structures can be evaluated in parallel by the low-Ievel boolean processors
acting in concert on their local segments of those structures. This is how
Connection Machines exploit parallelism and sustain high processing rates.

Network structure

An important feature of a connection machine is its support for programm­
able links between PEs. In the DAP, when one processor communicates
with its Northern neighbour all processors must communicate with their
Northern neighbour, or not at aIl. This is because the DAP has a static
square-mesh communication network, which only supports eight routing
functions. Communication in CM-I is significantly more powerful than this,

In could be argued that the DAP is also a connection machine.

www.manaraa.com

60 Architecture of High Performance Computers - Volume II

Memory
Bus

Host

Array
Instructions

Micro­
controller

Broadcast
I-' instructions

64K Processing Cells
4096 Bits/cell

Square-grid Connections

+
Hypercube Connections

High Bandwidth 1/0 (=500 Mbits/sec)

Figure 4.11 Architecture 01 the Connection Machine

since each group of sixteen processing elements share a link into a packet­
switched binary 12-cube network, as weIl as having individual connections
to a DAP-like grid (known as the North-East-West-South, or NEWS grid).
Essentially this means that all PEs can compute the address of a PE to
which they want to send a message, and then use the 12-cube network to
route the message in logarithmic time. A two-dimensional grid routes mes­
sages in O(v'N) time, where N is the number of PEs. A full set of NN
permutations are supported by adynamie binary k-cube network, where
k = log N, and in the case of CM-l this produces a quoted worst-case
bandwidth of ~ 3.2 x 107 bits/s and a best-case bandwidth of ~ 1.0 X 109

bits/so The operation of the CM-l communication network is described in
section 4.2.3.

Technology

The implementation of CM-l relies on a single custom VLSI component
which contains a group of sixteen boolean processors, a local controller, and
a message-routing interface to the cube network. This chip is fabricated in
CMOS technology, and contains approximately 50,000 active devices in an
area of about 1 cm2• It dissipates around 1 Watt when operated at 4 MHz.
The local memory for each group of sixteen processors is supplied by four
4Kx4-bit static RAM chips.

Each printed circuit board in the CM-l processor array contains 32

www.manaraa.com

Practical Array Architectures 61

sets of processor jmemory chips, corresponding to 512 individual cells. This
also represents the lowest five dimensions within the 12-cube network of a
65536-cell system. The PCB modules slot into backplanes containing up to
16 such modules, representing the next four dimensions of the cube. Two
backplanes constitute a single rack, and each rack contains its own micro­
controller. Four racks together make up a complete system, packaged a cube
measuring approximately 1.3m on each side. The entire system is air-cooled
and dissipates about 12 kW.

Implementing the higher-dimension network connections, between back­
planes and between racks, requires a significant amount of wiring. In
CM-l this is constructed using controlled-impedance flat cables. Alliower­
dimension connections are routed on the module and back plane PCBs.

4.2.2 Processing elements

The processing element of CM-l is a completely general-purpose single-bit
processor with a private 4K X I-bit memory. Whereas in machines like the
MPP and STARAN special architectural features, such as shift registers,
are introduced to support integer multiplication, in CM-l the processor cell
is kept as simple as possible. It is also highly programmable.

Figure 4.12 shows the logical structure of a CM-l processing element. It
consists of a single-bit arithmetic and logic unit, a file of sixteen single-bit
registers (calIed flags) and connections from the local memory to the ALU
and from the flags to the message router. The ALU is capable of realising
all 256 possible boolean functions of three inputs (two memory operands
and one flag) , and it does this for both the value to be written back to
memory and the value to be written back to one of the flag registers. This
requires a total of sixteen bits of control input to the ALUs. In addition,
the PE microcontroller must also specify the following parameters for each
operation.

1. A-address and B-address. The two memory operand bits are read
from the A and Baddresses and the memory output from the ALU is
written back to the A address location.

2. Read and write flag addresses. These specify one input flag for the
ALU, and one flag register to which the flag output from the ALU is
written.

3. Condition flag address. Specifies which of the sixteen flags is to be
used to determine whether a conditional operation will take place
locally.

4. Condition sense. Selects either active-high or active-Iow state for the
condition flag selected.

www.manaraa.com

62 Architecture of High Performance Computers - Volume II

m-Function
Select

A-Operand
Address

B-Operand
Address

8

12

12

Single-bit 'ALU'

Memory
I

Flag I
Output I Output

Function I Function I

t1 1-
F

4K x 1-bit I

Local a

Memory 9
s

'---

4

4

8
,

Rea

f-Function
Select

d-flag Address

Writ e-flag Address

Figure {12 Structure 0/ a CM-1 processing element

5. NEWS direction. Specifies which of the four 2D mesh permutations
is selected for operations involving the NEWS grid.

The fiag register file contains eight general purpose fiags and eight spe­
cial purpose flags. The special purpose flags provide links between the ALU
(and hence memory) and the interconnection networks (that is, the NEWS
grid and the router). For example, one read-only flag contains informa­
tion written from the flag output of the neighbouring ALU in the direction
specified by the NEWS direction controls. The sixteen PEs in each CM-
1 processor chip can also be linked to form a chain of processors, as weIl
as a square mesh, and this permits (rather slow) carry propagation across
16-bit slices of processing elements. So, whilst the design of the processing
elements is not highly optimised for speed, the fiexibility of the ALU and
the fiags together compensate somewhat, and the massive replication of the
PEs puts their combined power of about 109 integer 32-bit additions per
second, weIl into the supercomputer category.

4.2.3 The router

Each group of sixteen PEs shares a single message router, which itself con­
stitutes one node in a binary k-cube network. In CM-1 k = 12, and so
there can be a maximum of 4096 routers, with each router being connected
directly to twelve other routers. For a formal description of the binary k­
cube network topology and routing functions see section 3.3.1. The main

www.manaraa.com

Practical Array Architectures 63

p m Data-bits 12 Address-bits

Figure 4.19 CM-1 message format

point to note here is that proeessors whose node addresses differ in only
the ith bit-position have a direet eonneetion in the ith dimension of the
eube network. Sinee any two addresses ean only differ in a maximum of
twelve bit-positions (that is, one is the inverse of the other) there ean be at
most twelve unique links forming a path between them. Henee, in a k-eube,
no pair of nodes is separated by more than k links. We now deseribe the
operation of the packet-switehed CM-l network.

Routing algorithm

The routing algorithm used in CM-l is based loosely on the standard routing
functions for binary k-eubes deseribed in seetion 3.3.1. The message format,
shown in figure 4.13, eonsists of an address and a data field, with a one­
bit separator and a single trailing parity bit. The address of a message
eomprises a relative router address field (12 bits), a PE address within a
group of sixteen (4 bits), and an address in the memory of the destination
proeessor where the message is to be depositedon delivery (12 bits). Router
addresses are said to be relative beeause they speeify the distanee to be
moved in order to get from the souree to the destination proeessor. Henee,
a 1 in bit position i indieates that the message must be routed through
dimension i before it ean arrive at its destination. Conversely, a 0 in bit
position i me ans that no routing through dimension i is required. Therefore,
when an address is all zeros the message must be at its destination. Also,
when a message is routed through dimension i towards its destination, bit i
must be clearedj and when routed away from its destination, bit i must be
set.

In the terminology of the designers of CM-1, eaeh parallel message de­
livery eyde eonsists of a sequenee of repeated petit cycles. In a single petit
eyde all messages whieh do not eneounter routing delays (eaused typieally
by eontention in the network) will be delivered. These petit eydes are re­
peated until all messages within a 'burst' of messages have been delivered.

www.manaraa.com

64 Architecture of High Performance Computers - Volume II

Message bursts are normally associated with 'beta reduetion' operations
(see seetion 5.1.2). Eaeh petit eycle eonsists of a sequenee of twelve dimen­
sion eycles, and du ring the ith dimension eycle messages are routed (where
required and where possible) through the ith dimension.

The injeetion of messages into eaeh router oeeurs at the beginning of
eaeh petit eycle, but no more than four messages ean be injeeted into eaeh
router on eaeh eycle. This number may be redueed if insufficient buffer­
ing spaee is available in the router, sinee routers operate on a store-and­
forward prineiple. This all means that eaeh router must make deeisions on
whieh messages are aeeepted for injeetion, and on whieh messages are to be
given priority for forwarding along eonneeted links. The router does this by
searehing its buffers of pending messages during the ith dimension eycle to
discover which messages have bit i = 1 in their relative node address field.
An ith-bit set indieates that the message needs to be routed on the ith
output link. The router ehooses the 'oldest' such message, essentially im­
plementing a first-eome, first-served, poliey. It is worth noting that whilst
twelve routing functions must be applied to a message (so me of whieh may
be null) before it ean be delivered, there is no ordering on the evaluation of
these funetions. Therefore, if a message is bloeked du ring the first dimen­
sion eycle it ean still be routed on the remaining eleven dimension eycles,
subjeet of course to further bloekages. However, it eannot be delivered until
the first dimension eycle has been repeated sueeessfully, and this takes at
least one whole petit eycle.

Sinee routers ean aeeept injeeted messages regardless of the bloekages
they may eause further on in the routing eycle, there is no obvious upper
bound on the degree of store-and-forward buffering required at each node
to eope with network eongestion. The router is clearly hardware limited, so
an oeeasional overflow meehanism must be provided. The meehanism used
in CM-1 is ealled referral, and entail sending overflowed messages along
'unused' but ineorreet links, effeetively taking them further away from their
destination. To do this the router simply seleets an unused output dimen­
sion and sets the eorresponding bit in the relative node address field for
that message.

Referral also provides a means of supporting fault-tolerant networks.
Failure of one node in the 12-eube network simply results in a permanent
bloekage of the 12 links to whieh it is attaehed. The adaptive routing poliey
then eauses messages to be routed around the offending node, with some
time penalty of course, but in a manner transparent to the software.

www.manaraa.com

Practical Array Architectures 65

Network performance

The performance of the interprocessor communication network in the DAP
is easy to analyse since all permutations are homogeneous2 • However, in
the Connection Machine routing functions are not homogeneous, and hence
the distribution of message addresses can have a major effect on the net
communication bandwidth.

It follows from the routing algorithm that the number ofinter-nodal hops
that a message must make is equal to the number of 1 's in the destination
address. Uniformly distributed message addresses will have a mean of n/2
1 's, where n is the number of bits in the address. Only one message can
occupy each link during a single petit cyde, and during each dimension
cyde only one twelfth of all communication links can be active. This is not a
particularly efficient use of wire, the component which most severely limits
the extensibility of cube-connected architectures. From the assumptions
above we can predict the sustainable bandwidth of the network. A cube
network with N = 2n no des has nN = n2n wires in total. Since the number
of 1 's in all message addresses can only be changed to O's at a rate of one
per wire per petit cyde, in its steady-state the network cannot accept more
than n2n injected address bits which are 1. This means it cannot accept
more than twice this number of uniformly distributed messages. Thus there
can only be 2N injected messages, or two injected messages per node, in
each petit cyde.

The network does however contain some message buffering, and so at the
beginning of a burst of messages the message-injection rate can be higher
than two per node in each petit cyde. Higher levels of message injection
can also be sustained when message addresses are localised. This must be
considered when allocating elements of an active data structure to process­
ing cells. Some operations naturally require local communications only. For
example, steps in each beta-reduction operation specify near-neighbouring
processors, and hence the number of 1 's in each message address is just 1.

Another important consideration for message delivery in an SIMD sys­
tem is that each burst of messages only terminates when alt messages have
been delivered. Where routing conflicts occur, additional petit cydes must
be provided during the latter stages of the burst. Since all messages destined
for the same node must be delivered sequentially, the maximum number of
messages going to any one node during a burst of messages defines the
number of additional petit cydes that will be required. Fortunately for the
Connection Machine there are only a moderate number of destination pro­
cessors per network node (sixteen in CM-I), and during most operations
only one or two messages are destined for the same processor.

2In other words, all processors communicate using the same routing function.

www.manaraa.com

66 Architecture of High Performance Computers - Volume II

4.3 Summary

In this chapter we have examined the architecture and operational charac­
teristics oftwo SIMD array processors: the ICL DAP, and the TMC Connec­
tion Machine. The DAP uses a significantly more conservative technology
in its implementation than the Connection Machine, has considerably fewer
processing elements, and occupies a much greater physical space, than the
Connection Machine. However, this is to be expected since the DAP pre­
dates the Connection Machine by about ten years. So, what advances in
the architecture of SIMD array processors du ring those ten years have been
assimilated into the Connection Machine? The answer is, not very many.
The major difference of course is the binary 12-cube interconnection net­
work and its associated adaptive message-routing algorithm. However, this
could be emulated by the square-grid connections of the DAP. The major
advance is purely technological, in the form of a higher level of integration.

The architects of the Connection Machine claim than logic-in-memory
(LIM) machines such as CM-l overcome the von Neumann bottleneck by
replicating the processor-memory interconnection many times. However,
this is only true for operations wh ich are massively parallel, and all op­
erations executed by the host computer are still limited by this problem.
Furthermore, SIMD array processors have high values for nl/2 (for a defi­
nition see volume I, chapter 10), which are typically N /2 for N processing
elements. Some would say that this does not matter since each PE in an
SIMD array machine is so much smaller than the unit of parallel hardware
in other SIMD architectures. In effect, the utilisation of processing elements
in a LIM machine should be compared with the utilisation of the memory of
other parallel machines rather than the utilisation of the processing parts.
This produces a far more favourable comparison, since as we observed at the
beginning of chapter 2, the memory utilisation of SISD machines and vec­
tor machines falls as these machines become more powerful - but remains
constant in LIM machines.

These sentiments must be tempered with a little objeetivity, however,
and it is clear that applieations with only moderate quantities of data-Ievel
parallelism are better suited to veetor maehines with low values of nl/2

rather than massively parallel array maehines. As we shall see in the next
ehapter, massively parallel applieations ean gain a great deal from the use
of the types of machine described in this chapter.

www.manaraa.com

5 Array Processor Software

An appreciation of SIMD-array architectures is not complete without at
least an overview of the types of languages and algorithms that have been
developed for these machines. One of the most striking features of almost
all SIMD-array machines is the way in which moderate to large amounts of
data-level parallelism need to be explicitly described by the applications pro­
grammer, and this impacts on the design of both languages and algorithms.
For the language designer these machines present a problem; how should the
parallelism in the architecture be made visible to the programmer? Should
the structure of the architecture be reflected in the langauge to give the pro­
grammer complete control of the hardware, or should the language provide
a machine-independent interface to improve software structure and porta­
bility, albeit at some reduction in absolute performance? Some languages
do attempt to provide a high level of abstraction, CM-Lisp for example,
whereas others constitute what can only be described as augmented assem­
bler language, for example DAP Fortran. Between these two extremes exist
languages such as Actus, a language based around Pascal but with exten­
sions for defining and operating on parallel data objects. In this chapter we
examine the facilities within both CM-Lisp and DAP Fortran for defining
parallel data objects and for performing parallel operations on them, and
then go on to consider representative algorithms for each machine and look
at how they can be expressed in their respective languages.

5.1 Array processing languages

Distributed processor arrays support a particular type of parallelism which
is often referred to as data-Ievel parallelism. In this type of parallelism in­
dividual instructions are executed strictly in sequence, but each instruction
can be applied to a large number of data objects in parallel. Ta exploit
this kind of architecture from a high-level language requires features for
declaring data structures upon which such operations can take place, and
for expressing parallel operations on these data structures. The features
provided may reflect the architecture of a particular machine very closely,
as in the case of DAP Fortran, or may provide a more abstract interface to
the parallel machine architecture, as in the case of CM-Lisp. In general, an
abstract interface is desirable since it masks the hardware details from the
programmer and this encourages the production of portable software.

67

www.manaraa.com

68 Architecture of High Performance Computers - Volume II

In DAP Fortran, the data structures upon which array operations take
place are conventional Fortran vectors and matrices. The operations avail­
able correspond directly with the functions provided by the instruction set
of the DAPj such a language is little more than an extended assembler.
Conversely, in CM-Lisp, a special data type is introduced to represent col­
lections of Lisp objects upon which parallel operations can take place, and
special notations for applying functions to these collections of objects are
defined.

The aim of the following sub-sections is to impart something of the
ftavour of these two languages without attempting to provide complete de­
scriptions of the many features in these languages which are not directly
relevant to the design of array processor architectures. The interested reader
is encouraged to follow up the references cited for each language.

5.1.1 DAP Fortran

In DAP Fortran the primary data types are scalars, vectors and matrices,
and these relate directly to the physical storage layout of the DAP (see
section 4.1). The size of the DAP array is fixed at 64 X 64 processing
elements l and, to permit a trivial mapping of vector and matrix elements
to the DAP array, the language assumes that all vectors are 64 elements
long and that all matrices contain 64 such vectors. Consequently, array
bounds do not need to be specified in variable declarations. For example:

DIMENSION W(), X(,), Y(,21), Z(,,7)

This statement declares W to be a vector of 64 elements and X to be a 64 x 64-
element matrix. In addition, Y defines 21 64-element vectors and Z defines 7
64 x 64-element matrices. Note, this convention makes the mapping of large
matrices and vectors to the store of the DAP the explicit responsibility of
the programmer.

Within vectors and matrices individual sub-structures can be specified
by including or omitting subscripts as folIows.

xO
X(2,)

X(,6)
X(4,l)

the whole of X
the second row vector of X
the sixth column vector of X
the scalar value X(4 ,1)

This extends naturally to include structures with more than two dimensions.
Another useful method of selecting elements of a vector or matrix is to define
a boolean control vector, and use it to index the vector or matrix, thus:

1 With the exception of the recent AMT DAP-3, wh ich has a 32 x 32 array of processing
elements.

www.manaraa.com

Array Processor Software

REAL DVEC() , DMAT(,)
LOGICAL CVEC(), CMAT(,)

69

It is possible to select a subset of the elements of vectors and matrices by
writing DVEC(CVEC) and DMAT(CMAT). Only elements of DVEC and DMAT at
index positions coinciding with true values in the control vector or matrix
will be selected. The implementation of this relies on the conditional form
of array instructions described in section 4.1.4.

A major feature of the DAP is the way in which processing elements
(PEs) are connected in form of a square mesh. If each PE holds one ele­
ment of a 64 X 64-element matrix then an obvious feature for the language
to support is the alignment of data by means of the near-neighbour con­
nections. In terms of vector and matrix data types this means applying a
simple linear transformation to the index of every element, effectively either
adding or subtracting one from an row or column indices simultaneously.
This can be expressed in DAP Fortran as:

DMAT(+,)
DMAT(-,)
DMAT<. +)
DMAT<' -)

= shift an elements upward
shift an elements downward
shift all elements to the right
shift aB elements to the left

What happens at the boundary of the array during alignment operations de­
pends on the currently selected geometry. The columns running from North
to South, and the rows running from West to East, can each be connected
either in a PLANAR or a CYCLIC geometry, corresponding to the geometry
specification of DAP shift instructions (see figure 4.8 on page 52). Align­
me nt by more than one position can be specified by the SHIFT statements.
There are eight of these, one for every combination of direction and geom­
etry. Hence to shift a matrix DMAT along the positive diagonal by I places
can be done using SHift South Planar and SHift East Planar alignments, thus:

SHSP(SHEP(DMAT,I) ,I)

One of the most useful features of the CYBER 205 and CRA Y vector
architectures is the way in which conditional expressions within loops can
be vectorised by using contral vectors (see volume I, chapters 7 and 9). This
permits statements of the form

DO 10 I = 1, 1000
IF A(I).GT.THRESHOLD THEN

B(I) = S * C(I)

10 CONTINUE

to be compiled to a sequence of two instructions; one to evaluate the control
vector, and one to compute S*C (I), storing the result in B if and only if the

www.manaraa.com

70 Architecture of High Performance Computers - Volume II

Ith element of the control vector contains a 'true' value. A similar feature is
available in DAP Fortran whereby an array of LOGICAL values can be used
to index an array of data values on the telt-hand side of an assignment, thus:

LOGICAL GTHAN(,)
REAL AMAT(,), BMAT(,), CMAT(,), S

GTHAN = AMAT .GT. 0.0
BMAT(GTHAN) = S * CMAT(,)

These mechanisms are fine for manipulating arrays explicitly, but when
the application task does not decompose naturally into arrays, and array­
like operations, a more general solution must be found.

5.1.2 CM-Lisp

In the same way that DAP Fortran comprises standard Fortran with exten­
sions to handle SIMD data structures and operations, the version of Lisp
designed for the Connection Machine uses Common Lisp as a base language
and augments this with several novel features. CM-Lisp introduces a new
data type known as the Xector, and Xectors constitute the operands of all
parallel operations. A Xector can be thought of as a set of values, with each
value stored in a unique processing element. Each element ofaXector is
identified by a unique label, which in practice would be either the address
of the horne processing element or a unique tag to be associated with the
value in the horne processing element. A Xector therefore defines a mapping

in which the domain and range are both elements of the powerset of Lisp
objects. For example, the following is a Xector.

{sky -t blue grass -t green apple -t red}

Note, the humble vector can now be seen as a special case of the Xector in
which the domain is simply a set of contiguous integers, for example:

{O -t 1.3 1 -t 4.7 2 -t 6.8}

Vectors such as this can also be written in a shortened form which omits
the domain values.

{O -t 1.3 1 -t 4.7 2 -t 6.8} == [1.3. 4.7. 6.8]

Xectors can also be interrogated, given adefinition ofaXector called
colour-of as the following:

(SETQ colour-of . {sky -t blue apple -t red grass -t green}

www.manaraa.com

Array Processor Software 71

it is possible to extract the 'colour' of an apple, using the XREF function,
thus.

(XREF colour-of 'apple) => red

Alpha notation

When a Lisp expression is preceded by a, it is interpreted as a Xector
in which the range consists of only the constant value produced by the
expression. So, for example,

a3 => {-t 3} produces a Xector where all domain values map to 3

a+ => {-t +} pro duces a Xector of 'plus' functions

Parallel operations as we know them in SIMD machines can be specified by
applying a Xector of functions to a pair of Xector operands. For example,
the add function can be applied in parallel to a pair of Xectors where the
range type are either fixed or floating-point numbers as shown below.

(a+ '{a -t 1 b -t 2} '{a -t 3 b -t 3}) => {a -t 4 b -t S}

It is possible to factor out the alphas to make expressions more readable,
for example:

(a+ a1 a2) a(+ 12)

However, if X and Y are Xectors, then • can be used to nullify the effect of
an alpha, thus:

(a+ X Y)

This form of notation is comparable with the 0 and (,) notation in DAP
Fortran, but is slightly more powerful since the size of each parallel data
object is not restricted. Expressions involving alpha notation create objects
on demand, and so the effect of writing a+ is to create as many scalar plus
functions as there are parallel data operands.

Beta reduction

Alpha notation is useful for specifying functions on independent data objects
that can be executed in parallel. Conceptually, both the operands and
the results are distributed throughout the array of processing elements.
Therefore Alpha notation is only capable of expressing parallel functions of
the form:

www.manaraa.com

72 Architecture of High Performance Computers - Volume 11

Xeetor x Xeetor x '" x Xeetor 1---+ Xeetor

Some other meehanism is therefore required to permit elements ofaXeetor
to be combined if the fuH range of operations on Xectors is to be supported.
Consider for example the veetor dot-product operation used extensively in
numerical algorithms. If vectors are represented as Xectors, then performing
the multiplication step is trivial.

Forall i do A[i] * B[i]

Rowever, alpha notation is not eapable of expressing the cumulative reduc­
tion phase, in which elements of the result Xector from the above operation
need to be combined using the 'plus' function to produce a single scalar
result. This is where ß-reduction becomes important.

Beta-reduction expressions require three arguments; a combining fune­
tion and two Xector operands. They return a third Xector in which the do­
main consists of the set of values in the range of the second Xector operand.
The range includes those values in the range of the first Xector operand for
which the domain values are in the range of the second Xector operand.
Where two or more values in the range of the second Xeetor operand are
identical the combining function is applied to reduce the corresponding val­
ues in the range of the first Xector operand to a single value. This all
sounds rather tortuous, but can be readily understood with the aid of a
simple example.

(ß '{1-+ 12 -+ 33-+ S} '{1-+ A 2 -+ B 3 -+ B}) => {A -+ 1 B -+ 8}

If the second Xector is null (or not specified) then alt values in the range of
the first Xector are combined, and the result is a scalar Lisp object. Now
the vector dot-product can be expressed as:

(ß+ (a* X V))

The theoretical minimum number of parallel applications of any dyadic
cumulative reduction function is [Iogz n 1, where n is the number of val­
ues which must be combined. Given appropriate parallel hardware, where
the depth of the inter-processor connection network is O(log n), this lower
bound on computation time ean be approached by ß-reduction expressions.

The production version of Lisp for the Connection Machine is known
as *Lisp, and uses slightly different syntactic marks to identify the special
features of Connection Machine Lisp. The interested reader is referred to
Rillis 1985 [RiI85] or [TMC86].

www.manaraa.com

Array Processor Software 73

5.2 Algorithms for array processors

The purpose of this section is to consider the types of application algorithm
that are suitable for efficient implementation on distributed SIMD processor
arrays, and introduce some general principles for the design of algorithms
for such systems.

In general, for an algorithm to be suitable for a large-scale distributed
processor array, it must contain a significant quantity of data-Ievel parallel­
ism. Often there will exist sequential algorithms for a problem under con­
sideration, and a simple inspection may reveal extensive data structures
and extensive, independent operations. Such sequential algorithms are use­
ful starting points from which to begin the design of a parallel (SIMD)
algorithm.

One of the most important design considerations with distributed array
algorithms is data decomposition. Since processing elements only have direct
access to data stored locally, a sensible distribution of data between proces­
sors is essential for efficient processing. But what is a sensible distribution
of data?

Although the answer to this question is highly dependent on the prob­
lem being considered, a few general rules can be observed. Firstly, when
designing an algorithm which requires the distribution of data, the overrid­
ing consideration must be in maximising the independence of data stored in
distinct processors. An examination of the granularity which results from
each candidate distribution will provide an indication of how much data
alignment (the SIMD equivalent of inter-processor communication, as dis­
cussed in section 6.1.2) is required in proportion to parallel array operations.
In general, the granularity should be maximised.

Another important design criterion is the topology of the inter-processor
communications network, since this determines the types of data alignment
which can be performed efficiently. More often than not the primary lan­
guage used on each machine will restrict the user to those operations which
are supported directly in hardware, making the choice of system somewhat
dependent on the intended applications.

The performance distinctions between different SIMD network topolo­
gies can be observed readily by considering the implementation of Beta
reduction operations on two different network topologiesj the square mesh
and the binary k-cube.

The type of ß-reduction in which we are interested is similar to the
vector sum-of-products function shown below.

s := 0;

Forall i do
s := s + a[i] * b[i]

www.manaraa.com

74 Architecture of High Performance Computers - Volume 11

On a square mesh topology, with North, South, East and West data align­
ments, and with yn X yn processing elements, a suitable reduction scheme
could be as folIows.

Assurne that the values of a Ei] and b Ei] are distributed such that each
processing element has at most one element of each vector, and that the
individual products can be formed in a single step. The algorithm outlined
below will enable the sum of these products to be computed using only
the orthogonal alignments provided by the hardware; notably single pI ace
plan ar shifts in the North, South, East and West directions.

1. Define yn partial sum variables, one located in each processing el­
ement of the left-most column. Initialise them with the product of
a Ei] * b Ei] produced locally.

2. Shift the column of partial sums one place to the right and add in the
products found in the new local processing element.

3. Repeat step 2 until the partial sums are in the right-most column.

4. Shift the partial sum located in the top-right processing element down
by one place and add in the partial sum from the processing element
into which it moves.

5. Repeat step 4 until the partial sum is in the bottom-right processing
element.

6. The partial sum in the bottom-right processing element contains the
sum-of-products.

A simple analysis ofthis algorithm indicates that it takes 2(yn-l) align­
me nt steps, and that the array operates in parallel during only half of the
steps. Furthermore, when the array is operating in parallel the parallelism
is only Yn. However, this is asymptotically optimal for a two-dimensional
square mesh topology. This fact can be verified intuitively by observing
that all products, or partial sums in which they are included, must be
combined at some point in the algorithm, and the maximum separation of
any two products is 2(yn - 1) inter-processor links. Hence, the execution
time of this algorithm is bounded below by the restricted communication
bandwidth provided by a square mesh network.

On a binary k-cube topology, with n = 2k processing elements (where
k is an integer) and a one-to-one correspondence between products and
processing elements, the sum-of-products can be formed in the following
way.

1. Let processing elements be identified by binary labels (addresses) of
the form ak •.• al, and let there be two label variables in each PE
called mask and dimension.

www.manaraa.com

Array Processor Software 75

2. In each PE set mask = 1 ... 1 and dimension = 10 ... 0

3. For all PEs with labels (interpreted as unsigned integers) that are less
than or equal to mask perform steps 4 and 5.

4. If the local label logically ANDed with dimension is equal to dimension
then transmit the local partial product to its nearest neighbour in
dimension i else receive a partial product from dimension i and add
it to the local partial product, where i = log2(dimension).

5. Shift arithmetically the mask and dimension variables one pI ace to
the right in each PE.

6. Repeat steps 3, 4 and 5 until mask is zero.

Again, an analysis of this simple algorithm is relatively straightforward.
Each of steps 3, 4 and 5 can be assumed to take constant time, and are all
repeated k = log2 n times. The parallelism at each stage is equal to mask +
1, and this halves after each iteration. The computational power of binary
k-cubes in SIMD architectures should be apparent from this elementary
example, for as weIl as having an ability to process independent data items
in parallel they can combine distributed data items in logarithmic time, and
this is known to be asymptotically optimal.

5.2.1 Partial differential equations

In this section an indirect algorithm to find a solution to a set of partial
differential equations (PDEs) is used as an example of how a highly struc­
tured problem can be mapped to a mesh-connected SIMD array, such as
the DAP, using a primitive parallellanguage such as DAP Fortran. Whilst
it is not the purpose of this book to discuss algorithms for parallel machines
in any great detail, so me background to the techniques for solving PDEs is
required in order to appreciate the choice of algorithm.

A linear second-order PDE in two independent variables has the general
form

82 4> 82 4> 82 4> 84> 84>
A 8x2 + B 8x8y + C 8y2 + D 8x + E 8y + F4> = G

where the coefficients A through G can be dependent on x and y, but
must be independent of 4>. This general form covers a number of important
equations which characterise problems in engineering and physics, such as
diffusion, gravitational and electrical potential, Schrödinger's Equation, and
many more.

Numerical solutions to PDEs can be found by using finite difference
methods [FW60], and since these involve large numbers of computational
steps they are likely candidates for parallel processing. For equations in

www.manaraa.com

76 Architecture of High Performance Computers - Volume 11

two independent variables (x and y) the solution-space is represented by an
n X n array of points (representing values for ifJ), spaced equally in the x
and y dimensions. There are two general methods for arriving at a solution;
direct and indirect (often referred to as iterative). Direct methods involve
a fixed number of computational steps, and are certainly faster than indi­
reet methods. However, when the number of points in the solution-space
becomes large the computational errors for direct methods become unman­
ageable. The amount of parallelism in direct methods is therefore somewhat
restricted. With indirect methods an initial estimate to the solution is made,
from wh ich successive refinements are computed iteratively. Various tech­
niques for computing the refined values for ifJz,1I are possible, and the choice
of which one to use depends heavily on the resultant rate of convergence.

In the finite difference method a set of algebraic difference equations
relates the value of a single point in the solution-space to its nearest neigh­
bours in the x and y dimensions according to the values of local coefficients
derived from the coefficients of the PDE. A simplification of the general case,
known as the model problem, relates the refined values for the solution-space
to the old values according to the following recurrence.

ifJ' = ifJz-l,1I + ifJz+l,1I + ifJz,II-1 + ifJz,II+l
z~ 4 (5.1)

Jacobi's method for producing a converged solution involves computing
all values of ifJ' simultaneously, and consequently contains a large amount of
parallelism. However, it has been shown [Var62] that this method converges
very slowly. The convergence rate can be improved by using a technique
known as successive over-relaxation (SOR), whereby the new value at a
point in the solution-space is defined as the weighted sum of the old value
and the new estimate. In addition, new values are used in the calculation
of other new values, within the same iteration, as soon as they have been
computed. This pro duces a rapidly converging solution, but unfortunately
the recurrence relation between ifJ values within the same iteration makes
this method essentially sequential.

Several ways of partitioning the points to weaken the recurrence rela­
tion exist, for example one could compute all even-numbered lines in the
x-y plane in parallel, followed by all odd-numbered lines (SOR by lines).
One could compute all rows of points in parallel and then all columns
of points in parallel, and this is known as the alternating direction im­
plicit (ADI) method. However, a method which is particularly well-suited
to the DAP architecture, where communication takes place with near­
neighbouring elements only, is odd-even ordering with Chebychev acceler­
ation. This is also known variously as the chequer board algorithm or the
red-black algorithm.

www.manaraa.com

Array Processor Software 77

The odd-even algorithm operates by partitioning the points into two
disjoint sets; those for which :z: + y is odd, and those for which :z: + y is even.
It then operates by calculating all odd points in parallel, followed by all even
points in parallel. This is equivalent to visualising the points in the solution­
space as squares on a chequer board, and processing all the red squares in
parallel, followed by all the black squares. Chebychev acceleration is simply
a method for adjusting the over-relaxation weight after each set of odd or
even points have been updated.

It is now possible to consider a concrete algorithm for computing the
PDE solution using odd-even ordering with Chebychev acceleration. This
is first expressed using an informal step-wise notation, and secondly as a
sub-program unit in DAP Fortran.

1. Define two distributed matrices of LOGICAL values to enable the odd
and even locations in the solution-space to be selected independently.

2. Generate an initial approximation to the solution, and calculate the
number of iterations that are required for a given level of accuracy in
the final solution.

3. For all odd points in the solution-space calculate the new estimate and
the new over-relaxed value, and update each point using a weighted
sum of these values.

4. Re-calculate the over-relaxation weight.

5. Perform step 3 again, but this time operate on the even points only.

6. Re-calculate the over-relaxation weight.

7. Repeat steps 3 to 6 for the required number of iterations.

Let us now analyse this algorithm to ascertain the degree of parallelism it
contains. Steps 1 and 2 are initialisation steps and can be ignored. Steps 3
to 6 comprise the main iterative loop, and contain two parallel calculations
and two scalar calculations. The parallel calculations (steps 3 and 5) involve
the computation of new estimates for 4>zll in half of the 64 X 64 array of
processing elements (assuming the size of the problem is exactly 64 X 64)
and therefore has a parallelism of 2048.

The calculation of each new value involves what is sometimes described
as a cross-point calculation corresponding to equation 5.1, and this can be
expressed quite concisely in DAP Fortran using data alignment notation as
follows.

0.25 * (U(-,) + U(+,) + U(,-) + U(,+))

www.manaraa.com

78 Architecture of High Performance Computers - Volume II

This requires four shift operations which must be performed sequentially,
four floating-point Add operations, and a floating-point multiply operation.
In addition to this, the new estimate must be weighted and added to a
weighted version of the old solution. Again, these weighting and addition
operations ean be performed in all odd (or even) PEs eoneurrently. The
sealar operations consist of the re-calculation and distribution of the new
weight after eaeh half-iteration. There are two ways in whieh these eould
be implemented. Either the sealar part of the maehine ealculates the new
value for W onee only and distributes it serially via the row (or column)
highway, or each processing element calculates its own private copy of W.

The second method involves a large number of 'redundant' computations,
but avoids the distribution phase, and for some tasks this approach may
actually be faster.

A skeleton of a DAP Fortran routine to compute this algorithm is pre­
sented below. To aid readability the initialisation parts and the weight
ealculations are commented out.

INTEGER I, ITERATIONS
REAL Ue.), W
LOGICAL ODD(,), EVEN(,)
- initialise the ODD and EVEN mask variables
- initialise the weight W
- calculate the number of iterations required
DO 10 I = l,ITERATIONS

U(ODD) = (l-W)*U(,) + W*0.25*(U(-,)+U(+,)+U(,-)+U(,+»
- calculate new value for W
U(EVEN) = (l-W)*U(,) + W*0.25*(U(-,)+U(+,)+U(,-)+U(,+»
- calculate new value for W

10 CONTINUE

The main points to note about this algorithm, and its implementation on a
machine like the DAP, are that its strueture fits the arehitecture very weIl
ahd that DAP Fortran simply provides a means of expressing it suecinctly.

This is an example of an algorithm whieh is weIl-suited to the maehine
on which it is implemented, but there are many parallel algorithms for which
the mapping to a square mesh arehitecture in not quite so obvious. Nev­
ertheless, teehniques for implementing more sophisticated data alignments
on a square mesh exist, although these eneounter a simulation slow-down
factor whieh in some eases ean be significant.

The Connection Machine (section 4.2) supports hypereubic connections
between groups of processing elements, as weIl as a square mesh network
(known as the NEWS grid), and together these make the Connection Ma­
chine a very flexible SIMD architecture. In order to appreciate this we

www.manaraa.com

Array Processor Software 79

now examine how the Connection Machine, and CM-Lisp, can be used to
implement an elementary graph algorithm in parallel.

5.2.2 Minimum path length

Numerical applications, such as partial differential equations, are not the
only types of application with significant amounts of data-level parallelism.
There are a great many manipulative algorithms involving sorting, searching
and dictionary operations which are also inherently parallel. Many impor­
tant problems can be modelled in terms of graph structures, for which there
are mature sequential graph algorithms as weIl as an increasing number of
parallel algorithms. Such non-numerical applications are known collectively
as symbolic algorithms, since their prime concern is in the arrangement of
symbolic objects rather than the arithmetic combination of floating-point
values. In this section we discuss the implementation of an SIMD algorithm
for finding the shortest path between any two vertices of an arbitrarily con­
nected graph. The language chosen to express this parallel algorithm is
CM-Lisp, and this is chosen in order to emphasise that with a reasonably
high level of data abstraction it is possible to describe parallel activities in
a succinct and machine-independent manner.

Let us first consider how one might compute sequentially the minimum
path length between a single source and a single destination vertex in a
graph G = (V, E), where V is a finite set of vertices and E is a finite set
of edges. Let us assume that G is an unweighted connected graph, since
this simplifies the solution without significant loss in generality. Moore's
algorithm [Mo059] for finding the shortest path from a single source ver tex
to all other vertices is a suitable sequential algorithm, and thus forms the
basis for the parallel SIMD algorithm presented here as an example.

Moore's algorithm

Let length(u,v) represent the length of the edge from vertex u to vertex v,
and let this be 00 if u and v are not connected directly. Let distance(v) hold
the best (shortest) path length from the source vertex s to vertex v, and for
all v E V - {s} this is set initially to 00. The value of distance(s) is initially
set to zero. Moore's algorithm operates by expanding outwards from the
source vertex, along all possible edges, maintaining a queue of all vertices
connected to parts of the graph which have been reached by the algorithm,
but which have not yet been expanded. Initially this queue contains only
the source vertex, and for as long as the queue contains unexamined vertices
the algorithm continues by removing a vertex u from the head of the queue
and performing the foUowing sequence of actions.

www.manaraa.com

80 Architecture of High Performance Computers - Volume II

1. For all edges (u, v) E E, if distance(u) + length(u, v) is less than
d%'stance(v) then set distance(v) = distance(u) + length(u,v), and
add vertex v to the queue if it is not already present.

2. repeat step 1 until the queue is empty.

The parallel version

To parallelise this algorithm, and modify it for a single destination and an
unweighted graph (unit length edges), it is modified as folIows. Firstly,
the calculation of distances to the vertices held in the queue is performed
in parallel for all queued vertices. Secondly, the algorithm iterates until
the distance to a specified destination vertex d is finite. Hence, if there
is no path from s to d this parallel version of Moore's algorithm will not
terminate. An outline of this algorithm is given below.

1. Let distance(s) = 0

2. Vu E V - {s}, let distance(u) = 00

3. Vu E V - {s}, assign MIN(distance(k)) + 1 to distance(u), Vk E

ne%'ghbours(u).

4. Repeat step 3 until distance(d) i= 00

5. Return distance(d).

The algorithm defines an additional set of vertices for each vertex u, called
net'ghbours(u), which contains all vertices v such that (u, v) E E. Let us
now ex amine where parallelism can be exploited in this algorithm.

The iterations, defined by steps 3 and 4, cannot be processed concur­
rently since there is a recurrence relationship from one iteration to the next.
The parallelism is instead found within the Vu of step 3, and here two forms
of parallelism are possible. Firstly, at the outer-most level of step 3, cal­
culation of the new distance for all vertices from the source can take place
concurrently. Unfortunately many of these calculations will be redundant,
simply attempting to assign 00 + 1 to a distance which is already 00, or
re-calculating a known minimum path length. Secondly, the evaluation of
the MI N function is an example of a cumulative reduction operation, and
can therefore be performed with exponentially decreasing parallelism in log­
arithmic time (given suitable hardware of course).

In CM-Lisp the vertices and edges of G can be represented by the fol­
lowing structure definition.

(DEFSTRUCT (VERTEX:CM) Label Neighbours)

www.manaraa.com

Array Processor Software 81

This CM-Lisp expression defines indirectly three functionsj make-vertex,
Label and Neighbours. The Label and Neighbours functions perform field
selection on VERTEX objects, and make-vertex is the constructor function
for vertiees, in mueh the same way that CONS is the constructor function for
lists. The :CM suffix means that vertices are to be stored in the Connection
Machine memory and distributed amongst the processing elements, rather
than being stored in the Host processor.

Thus, it is possible to write down a CM-Lisp function (due to Hillis),
which takes three arguments 5, d and G, corresponding to the souree and
destination vertices and a Xector of vertices (the graph) respeetively. The
complete function is given below.

1. (DEFUN path-Iength (s d G)
2. a(SETF (Label .G) +INF)
3. (SETF (Label s) 0)
4.(a) (LOOP UNTIL « (Label d) +INF)
4.(b) DO a(SETF (Label .(REMOVE s G))
4.(c) 1+ (ßMIN a(Label .(Neighbours .G)))))
5. (Label d))

This piece of program requires so me explanation. The second line sets
the Label fields of all vertices of G to +00, and does so in parallel (assuming
each CM proeessing element holds a single vertex). The third line sets the
Label field of the sour ce vertex s to zero. Line 4 defines an iteration con­
struet which repeats until the destination label (Label d) is less than +INF.
Within this loop, lines 4.(b) and 4.(e) perform the business of ealculating
intermediate minimum path lengths by setting the labels of all ver ti ces in
G to be one plus the mimimum of the labels of their neighbouring ver­
tices. Within this expression, (REMOVE s G) is effectively a set-difference
operation, yielding a Xector of vertiees containing G - {s}.

The parallelism in this elementary example is clearly evident, and the
expression of parallelism is explicit. However, the code is remarkably con­
ventional and machine independent. The degree of parallelism is determined
by the connectivity of the graph, and in the worst case (where G defines a
chain of vertices) there is no parallelism at aB. The parallelism in this exam­
pIe beeomes significant when the real-world problem that is being modelIed
produces a large, highly connected graph. Typical examples of such a real­
world problem are finding the shortest route between two buildings in a
large city, and finding the optimum route for a either a copper track on a
printed cireuit board or track within a VLSI circuit.

www.manaraa.com

82 Architecture of High Performance Computers - Volume II

5.3 Sununary

In this chapter we have looked briefly at the topic of software for large
distributed arrays of processing elements, such as one finds in machines like
the ICL DAP and the TMC Connection Machine. Within the languages
that have been designed for such machines we find features which permit
parallel data objects to be declared explicitly and operated upon in parallel.
The functions made available to the programmer often reflect the specific
features of the underlying architecture, for example the data alignment
operations in DAP Fortran, but there is evidence that more general-purpose
and flexible languages such as CM-Lisp could be used in conjunction with
any distributed SIMD machine.

Generating and understanding parallel programs for SIMD machines is
often no more difficult than it is for sequential machines, particularly if the
language and the machine both match the application. Two of the most
important considerations for producing efficient software for these types of
architecture are discovering which computational steps can be performed
in parallel, and distributing the data so that the number of data alignment
operations is minimised.

www.manaraa.com

6 Multiprocessor A rchitecture

In the first volume we examined the range of techniques which are em­
ployed in high-performance architectures to improve the throughput within
a single processor. These techniques included pipelining, multiple func­
tion units and a variety of mechanisms designed to meet the necessary
memory throughput and latency requirements. However, the so-called 'von
Neumann bottleneck', which is the fundamental limit imposed on sequen­
tial processing by the rate at which information can be moved across the
boundary between processor and memory, limits both the rate at which
instructions can be issued and the rate at which operands can be supplied.

In the first half of this book we saw how data-level parallelism can be
exploited to some effect by SIMD architectures, through the array-like hard­
ware structures and specialised languages. In these types of architecture a
single instruction causes a large amount of data to be operated on by a
common instruction. Also, the predictability of memory reference patterns
can be used both to maintain a high ftow-rate of operands from memory
or to arrange for a large number of identical operations to occur simul­
taneously in an array of arithmetic units. Using this model of computation
the arithmetic throughput on suitable applications can be very high indeed.

In chapter 10 of volurne I, we saw how the 'Flynn limit' defines an upper
bound on the speed of instruction issue in SISD and SIMD machines, and
in many cases the single-instruction stream model can become a serious
limitation for these classes of architecture. At this point Amdahl's law,
stating that there is a diminishing return on the investment in parallel
hardware, itself provides some clue as to how we might progress beyond
this limitation imposed on us by those parts of an application which are
not regular, and which cannot be vectorised.

Recall from section 10.2.3 in volume I, that the performance of a two­
state machine is defined in terms of the relative speeds of the parallel and
sequential computations and the ratio of parallel to sequential activity in a
particular application, and that from this the upper bound on speedup can
be defined as

s< 1
- (1- a) + all

In this equation the proportion of work that can be performed using parallel
processing, a, is speeded up I times (where I is the ratio of parallel to
sequential processing rates), whereas the proportion of work which cannot

83

www.manaraa.com

84 Architecture of High Performance Computers - Volume 11

be performed in parallel (using SIMD technique) is not affected by the
introduction of parallelism. What needs to be done, dearly, is to somehow
reduce the (1 - a) term in the denominator by some factor p which can be
increased through the introduction of hardware capable of executing scalar
instructions in parallel. Hopefully, the speedup might then be determined
by

s < ;-p-~
p - (1 - a) + al I

This requires a different model of program execution in which there are a
multiplicity of instruction streams, and whilst this may not see m to be such
a radical step to take, the implications for software and hardware design
are wide ranging and occasionally problematic.

The most obvious implication arising from the change to an MIMD style
of architecture is that there must be several active [oei 01 eontrol (involving
a multiplicity of program counters) within the machine, with duplicated
instruction issue logic. This seems to be the direction in which existing
manufacturers of SIMD machines have been moving, for example, with the
introduction of M-SIMD machines machines such as the CRAY X-MP, the
CRAY-2, the CRAY-3 and the ETAlO • As we have seen, these machines
use parallel memory structures to overcome the von Neumann bottleneck,
and multiple processors to attack the problems of scalar processing and the
speed-of-light limitation on dock frequency.

Most computer scientists, and users of MIMD machines, draw a distinc­
tion between multiproeessor and multieomputer systems. If one considers a
processor as simply a component of a computer system, then the distinc­
tion becomes dearer. A multiprocessor is then a system in which there is
a simple replication of processors within a framework which does not al­
ter the relationship between the processor(s) and other components (such
as memory). Conversely, a multicomputer is a system in which the whole
computer (processor and memory together) are replicated, and some form
of communication network added, to allow them to exchange information.

The use of MIMD machines is still in its infancy, and the long-term
performance potential of multiprocessor and multicomputer systems is still
unclear. One might reasonably ask whether MIMD architectures are really
needed, since with hindsight it can be seen that the speed of conventional
SISD and SIMD machines increases by an approximately ten-fold factor
every five or so years. This has encouraged some users of computers to con­
jecture that one should simply 'wait a few years' for improved technology
to provide the required performance. Furthermore, they might argue, by
the time a new and novel architecture has been developed it may weIl be
superseded by a faster sequential machine. The problem with this argument
is that the development of implementation technologies, sequential proces­
sor architectures and MIMD architectures complement each other. Thus,

www.manaraa.com

Multiprocessor Architecture 85

faster sequential processors mean faster processing elements within MIMD
machines, and higher performance overall. IdeallY' MIMD machines with n
processors should simply be n-times faster than SISD machines constructed
from equivalent technology, although as we shall see later this is rarely the
case.

An interesting empirical 'law', attributed to Grosch [Gro75], states that
the performance of a computer is proportional to the square of its cost. In
other words, if one had twice the purchasing power, it would be possible
to purehase a machine roughly four times as fast. Alternatively, it is more
cost-effective to buy a single large computer than a number of smaller, inter­
connected computers. The problem with this counter-argument to MIMD
architectures is that whilst it is true within a particular dass of ar chi­
tectures, such as main-frames or mini-computers, it is not true between
different classes of architecture. Consequently, the cost per MIPS (or per
MFLOPS) in a multi-microprocessor system is significantly less than the
cost per MIPS in a typical ERDA 1 Cl ass VI supercomputer (such as the
CRAY-l). For example, the ratio of cost (in thousands of dollars) to perfor­
mance (in MFLOPS) for a CRAY-lS is 105.3, compared with an equivalent
ratio of just 8.6 for a 128-processor BBN Butterfly machine [JD86].

Examining currently available supercomputers, it becomes apparent that
the majority are pipelined vector processors, of the CRAY-l or CYBER 205
variety. Furthermore, a large proportion of the applications which require
very high performance can be processed relatively efficiently on such archi­
tectures, and this begs the question of whether anything other than very
high performance vector processors is required. The answer to this question
has already been provided by the manufacturers of vector machines, who
are now developing and marketing M-SIMD machines such as the CRAY X­
MP and the ETA 10. The problem of scalar processing, mentioned earlier,
simply cannot be solved by using faster, or longer pipelines.

In 1971, Minsky and Papert conjectured that the speedup achievable
by a parallel computer is proportional to the logarithm of the number of
processors, therefore rendering very-Iarge-scale MIMD processing ineffec­
tive. However, in recent years, the development of practical MIMD systems
(some of which are described in the following two chapters) has provided
substantial evidence to disprove this theory. For example, systems contain­
ing several hundred processors have been shown to yield a speedup which
is almost linearly proportional to the number of processors.

Perhaps the most serious problem limiting the speedup of MIMD sys­
tems is the existence of inherently sequential segments of code in every
application. These pieces of sequential code, together with fundamental

1 A machine satisfying the ERDA Class VI requirement has a floating-point perfor­
mance from 20 to 60 MFLOPS [Rus78].

www.manaraa.com

86 Architecture of High Performance Computers - Volume II

limitations in machine design, determine a maximum speedup for any ap­
plication. Thankfully, most of the applications which need the power of a
large MIMD system contain so much potential parallelism, that this con­
straint will only become apparent when very large numbers of processors
are used. Section 6.2.1 contains a detailed discussion of the performance of
MIMD systems, and attempts to quantify the effect of certain fundamental
algorithm and machine limit at ions on their speedup.

6.1 Design issues

In order to understand how various MIMD machines operate, and what
level of performance it is reasonable to expect from them, one must exam­
ine the design-space of MIMD machines a little eloset. For example, the two
most fundamental design decisions which must be taken very early on in
the design process are, firstly how powerful each processing element should
be, and secondly how many processing elements should be supported. For
a system performance of P, and an ideal architecture containing n pro­
cessors, each with an individual processing capability of p, the hyperbolic
relationship between n and p (shown in figure 6.1) defines a span of possible
architectures satisfying P = pn. Therefore, one could use a small number
of very powerful (and expensive) processors, or a large number of relatively
slow (and cheap) processors. The use of large numbers of cheap and simple
processors is made attractive by the development of VLSI. However, this
technological 'push' may provide the architect of a high performance system
with large quantities of sm all and powerful processing elements, but does
not in itself provide a complete solution to the problem of providing high
performance through massive parallelism.

From the computer architect's point of view, the central problem posed
by the requirement for very high processing rates, assuming the availabil­
ity of cheap VLSI computing elements, is how to match the parallelism
in the computation with the parallelism-potential in the hardware. This
me ans putting together a highly parallel assemblage of computing elements
in such a way that the performance of each individual element is made
available to the application. In turn, the application programmer requires
new ways of expressing the problem, in order that the available parallel­
ism can be exploited successfully. In the simplest sense, therefore, this is a
problem of connecting processing elements together and providing a means
of programming them sensibly.

This raises a number of fundamental design issues, which the architect
of a high performance MIMD system must consider. For example, suppose
a designer is given an unlimited supply of smalI, but powerful computing
elements, how should they be connected together? Since the number of
connections that can be made to each element is finite (and probably quite

www.manaraa.com

Multiprocessor Architecture 87

p

~--------------------~~n

Figure 6.1 Processor performance 1J. number of processors

small), it is impossible connect every element to every other element. Is
there then an interconnection strategy which is sufficiently universal that it
provides adequate connectivity for the majority of applications?

If it were possible to construct such a system, which languages would
be appropriate for expressing highly parallel applications, and should the
identification and expression of parallelism in the application be the respon­
sibility of the programmer? This is an issue which infiuences heavily the
design of parallel programming languages as weIl as MIMD architectures.
If we assurne that a highly parallel MIMD architecture and a suitable pro­
gramming language exist, the next question to ask is what algorithms are
available to exploit the parallelism provided by the machine? Algorithms
for sequential machines have been studied at great length, and classical
sorting, searching and numerical algorithms for such machines have been
documented [Knu73]. The avaiIability of high-performance parallel com­
puters has stimulated much research on the design of parallel algorithms,
and this is now becoming an increasingly important area of study.

In the next chapter a number of software issues for multiprocessors are
discussed, and this includes an overview of some languages and algorithms
for such architectures. A full treatment ofparallel programming languages
and algorithms in, however, beyond the scope of this book. The interested
reader is referred in the first instance to Perrott [Per87] who describes sev­
eral parallel programming languages and the ways in which they may be
used, and to Quinn [Qui87] who describes numerous algorithms for MIMD
and SIMD architectures.

Some would claim that the sequence of design decisions outlined above,
namely architecture, then language and finally application, is entirely the

www.manaraa.com

88 Architecture of High Performance Computers - Volume 11

wrong way to go about designing an MIMD system. The design of ar­
chitectures is always heavily influenced by the needs of the users, by the
characteristics of the intended applications, and by the languages through
which they are to be programmed. In short, machines can never be designed
without a thorough understanding of their intended use.

An equally important issue, which impinges on the architectural design,
the languages used, and the applications, is the resulting performance of the
system as a whole. In this respect, a predictable model of the performance
of a system is vital, and in section 6.2.1 we consider the performance of a
generalised MIMD machine in order to illustrate this point.

6.1.1 Categories of MIMD architecture

Research into the design of parallel systems has led to the emergence of a
number of distict categories of MIMD architecture, each with its own ad­
vantages and disadvantages. For example, at the beginning of this chapter,
the difference between a multicomputer and a multiprocessor was explained,
and this very coarse distinction effectively defines two broad categories of
MIMD architecture.

The relatively simple technique of replicating processors, and providing
them all with access to a common store, produces shared-memory multipro­
cessors, and the design of machines of this type is considered in chapter 7.
In common with SIMD array processors (section 2.1.1), the possibilities for
the placement of the interconnect yield two styles of shared-memory multi­
processorSj those with distributed memory, and those without. Distributed­
memory architectures operate on the principle that data that is local to a
processor will be placed in the local memory of that processor, thereby re­
ducing the load on the interconnection network. In situations where locality
is absent, or in which a uniform access cost is prefered, centralised-memory
architectures can be used. For many applications, not all processors need
access to all memory locations, and then a partitioning of the memory is
clearly sensible.

If the sharing of data is not permitted, processors will need to exchange
information in so me other way. When exchanging information through a
shared memory location, the processors involved must become synchronised
before the transfer can be completed. The writing processor must ensure
that valid data is not being overwritten, and the reading processor must en­
sure that the location is read after the writing processor has placed a value
there. This is analogous to passing a message from one processor to another.
Ensuring that processes are synchronised can be done using standard oper­
ating system techniques, such as semaphores, but an alternative technique
is to forgo the shared-memory and simply provide dedicated communication
channels between processors. This leads to the message-passing category of

www.manaraa.com

Multiprocessor Architecture 89

MIMD machines, and these are explained in more detail in chapter 8.
Shared-memory systems are often thought of as closely-coupled, since

the interconnection mechanism binds processors together (via the shared
memory) in what must be a physically compact design. Message-passing
architectures, however, are often considered to be loosely-coupled systems,
since processors can tolerate a greater physical separation, and normally
interact relatively infrequently.

The shared-memory versus message-passing dichotomy therefore defines
two classes of machines that are distinquished by the way in which the coop­
eration between processors is implemented. However, both message-passing
and shared-memory implementation techniques are equally capable of sup­
porting programming models with message-based process communications
or shared-variables. One must always be aware of the difference between
the architecture of a machine (the characteristics of the machine as seen by
the lowest level of software) and its implementation (the logical structures
used to support the architecture), and this is particularly important in the
field of multiprocessor systems.

The performance attainable by each mechanism for processor coopera­
tion depends, as we shall see, on the time-penalty associated with its in­
vocation and the relative frequency with which the language model and
application requires its use.

6.1.2 Granularity

The relative frequency with which processors interact (and hence, synchro­
nise with each other) is another important design issue. The frequency of
inter action can be quantified as simply the ratio of the amount of com­
putation to the number of communication events. This ratio is known as
the granularity of the process, with a small ratio corresponding to a fine­
grained process, and a large ratio corresponding to a coarse-grained process.
Fine-grained processes synchronise with each other relatively frequently,
whereas coarse-grained processes perform significant amounts of computa­
tion between synchronisation events. The granularity says nothing about
the amount of code, or the expected lifetime of a process, since the relative
frequency of communication is not necessarily related to these other factors.
In order to get a specific measure of granularity one might count the av­
erage number of basic machine instructions each process executes between
each synchronisation event. Coarse-grained processes could be expected to
execute several thousand instructions between each synchronisation event,
whereas fine-grained processes could execute just one. Throughout the re­
mainder of this chapter we denote the granularity by g, and this is then
equal to the number of useful instructions executed during each grain of
activity.

www.manaraa.com

90 Architecture of High Performance Computers - Volume II

The architecture of a multiprocessor system, and the performance of
the communication medium, together determine a minimum level of pro­
cess granularity that can be supported with reasonable efficiency. This
constraint on the exploitation of parallelism is discussed in greater detail in
section 6.2.1.

6.1.3 Load balancing

Consider a multiprocessor architecture in which a workload consisting of
m independent parallel processes is distributed between n processors. The
efficiency of the system depends critically on the work being shared out
equally between the processors, and this can be illustrated quite simply. If
all the work is allocated to a single processor, the system will perform no
better than a single processor. Conversely, if the work is divided exactly
between the n processors, the performance could be up to n-times that of
a single processor.

In fact the problem of load balancing is more complex than this suggests,
since the workload presented by each process is not necessarily the same,
and furthermore it is not generally known how much processor time will
be consumed by a process before it is started. This problem is further
complicated by the multiprogramming of a single processor, which is likely
to be responsible for m/n processes.

This leads to a consideration of several design issues related to load bal­
ancing. First of all, should individual processors divide their time between
a number of multiprogrammed processes? Secondly, should a process be
statically bound to one processor, or should it be able to migrate from pro­
cessor to processor depending on the availability of processing resources?
Thirdly, should the dynamic creation of processes be permitted, or should
the extent of parallelism be fixed at compile-time?

There is no single set of correct answers to these questions, since in prac­
tice each MIMD system is optimised for a particular type of computation.
However, a few basic rules can be defined. For example, a process should
only mi grate between processors if the performance gained as a result of the
move is greater than the performance lost due to organisational overheads.
In a tightly-coupled shared-memory architecture, the context information
for all processes will be available to all processors, and therefore the cost
of scheduling a process will be independent of the identity of the proces­
sor on which it is scheduled. However, in a loosely-coupled message-passing
architecture, there is a high cost associated with moving a process, since the
entire memory image for the process must be moved physically from one
processor to another. Hence, in a loosely-coupled system, it is generally
more difficult at run-time to arrange the load across the system to ensure
optimal throughput of the system.

www.manaraa.com

Multiprocessor Architecture 91

If processors do not share their time between a number of processes,
the utilisation of the system is likely to be relatively poor. This is because
interacting processes occasionally need to synchronise, at which point a
process must wait for another to catch up. If a processor has no other work
to perform during this waiting period, it will stand idle. However, when a
waiting process is eventually freed, there may be a significant delay before
it regains control of the processor. If the real-time response of the system
(to external events for example) is critical, then the designer may trade off
occasional idle periods for a fast response time.

An issue which affects both the architecture and programming language
of an MIMD system is whether processes can be created dynamically during
program execution, or whether the number of parallel processes is deter­
mined statically at compile-time. Static systems have the advantage that a
compile-time allocation of processes to processors can be performed (pos­
sibly under programmer control), and hence the utilisation of computing
resources can be optimised. The disadvantage of static systems is that cer­
tain types of parallel algorithm, which create processes on demand, cannot
be expressed naturally. Furthermore, the actual number of parallel proces­
sors must be known to the programmer, and a change in the number of
processors will necessitate the re-compilation of programs. Dynamic sys­
tems can be highly flexible, permitting programmers to remain ignorant
of the available parallelism. However, every machine has finite resources,
and parallel algorithms which generate very large numbers of processes may
execute with relatively poor efficiency. This is due to the fact that each pro­
cess requires a certain amount of memory space in order to run efficiently,
and is especially true in virtual memory systems, where the working-set
model applies [Den68J. This results in there being an optimum level of mul­
tiprogramming, above which performance falls away due to virtual store
interrupts, and below which performance falls away due to unused proces­
sor time.

6.2 Performance issues

There are many ways to measure the performance of a system. For example,
the metric of performance commonly assumed is speed, but reliability, cost,
and programmability are just as important. For the architect of MIMD
systems, however, speed is usually the primary concern. One of the ma­
jor problems in discussing performance, and comparing the performance of
different MIMD systems, is that it is extremely difficult to compare quanti­
tively two systems with radically different structures. There are simply too
many variable factors involved in the equations of performance for scien­
tific deductions to be made. Consequently, architects develop models which
characterise performance in terms of the most important parameters of a

www.manaraa.com

92 Architecture of High Performance Computers - Volume 11

system. These models are necessarily crude, but often yield useful and un­
expected results. In this section we present a general model of an MI MD
system, and characterise this system in terms of the most important features
of the architecture and the algorithm being executed.

Characterising the Application

There are essentially just two ways in which the transition to multiple in­
struction stream processing can improve performance: either by providing
a number of independent users with a superior time-sharing service, or by
providing one or more users with a parallel programming environment in
which process-parallelism is translated into application speedup through
the cooperation of a number of processors on a single task. To provide the
first category of service is relatively easy, since without interaction between
processors, very low inter-processor communication bandwidths can be tol­
erated. This is the philosophy behind distributed workstation networks,
and it can work very weIl. To provide the second category of service re­
quires both a logical and a physical mechanism for permitting a number
of distinct processes to exchange information du ring the course of their co­
operative effort. It is hence the provision of a communication mechanism
(whether through shared-memory or via message-passing) which is central
to the design and performance of MIMD systems. A corollary to this is that
the performance of an MIMD system depends not only on the efficiency of
the cooperation mechanism, but also on the relative frequency with which
cooperating processes interact.

The pattern of behaviour of a number of processes can be characterised
crudely, in terms of the amount of time each process spends computing in
relation to the amount of time it spends communicating. This corresponds
to our dimensionless ratio granularity, and this is therefore one of the most
important parameters of a parallel algorithm.

Now, regardless of the programming language used in an MIMD sys­
tem, the computation at the physical level consists of a number of parallel
grains of activity. If we assurne for a moment that the finest possible level
of granularity is used, then the computation consists solely of atomic opera­
tions whose inputs operands are the output results of preceding operations.
Such a sequence of dependent operations is illustrated in figure 6.2. Since it
takes a finite amount of time to process these atomic operations there will
be, at any instant, a certain number of atomic operations which have their
input values available. In theory, all such operations could be processed
in parallel, if there were enough processors. If all atomic operations take
an identical time to compute (this is a slight simplification), then the com­
putation can be divided into a sequence of stages. Within each stage, all
atomic operations can be evaluated in parallel, and every atomic operation

www.manaraa.com

Multiprocessor Architecture

a

b
c

d
e

I
I
I

Stage 1
('r, =3)

Stage 2
(,r2 =1)

x:= ((a+b)*(c+d))/(e-t)

Stage 3
("3=1)

Figure 6.2 Parallelism and dependencies

93

x

at stage i requires at least one operand that is computed at stage i - 1.
Therefore, if there are 1I"i atomic operations at stage i, then we say that 1I"i

is the instantaneous parallelism at stage i.
The variation of 1I"i over all stages in a computation can be plotted graph­

ically for any potentially parallel algorithm. The resulting parallelism profile
illustrates very clearly the parallel behaviour of a particular algorithm. A
sampie profile is shown in figure 6.3, and by inspection it is obvious that
the area und er the profile is equal to the total number of atomic operations
performed, and that the horizontal distance over which the profile extends
equals the absolute minimum number of computational steps. In figure 6.3
a vertical slice has been taken out of the profile, and this represents the in­
stantaneous parallelism, 11" i, at stage i. The vertical slices are time-ordered
in their execution such that

Vi,j (1I"i executes before 11"; -t i < j)

When we consider algorithms in which granularity is not minimal, the
parallelism at stage i is generally reduced. However, this is not always the
case. A totally sequential algorithm may have 1I"i = 1 for all i, and then
1I"i is always the same, irrespective of granularity. For most multiprocessor
systems it is too time-consuming to treat each instruction as an individual
process. Instructions are therefore composed into sequences, with commu­
nication events defining the start and end of each grain.

Some novel architectures do attempt to treat each instruction as an in­
dividual process. Since the program counter fcr each prccess can then take

www.manaraa.com

94 Architecture of High Performance Computers - Volume II

'Ir;

j

Figure 6.9 Maximal-parallelism profile

on only one value it is totally redundant and then the issuing of each in­
struction is determined solely by the availability of its input operands. Such
architectures are known as dataflow architectures. A significant amount of
research has been done in the area of dataflow architectures, but to date
their early promise has failed to be realised commercially. A treatment of
dataflow architectures is beyond the scope of this book, but interested read­
ers should consult Hwang and Briggs[HB84], or the February 1982 issue of
the IEEE Computer journal.

When granularity is not minimal, each stage in the computation consists
of more than one atomic operation. The atomic operations within a single
grain are assumed to be executed sequentially, and may therefore have se­
quential dependencies between them without adversely affecting the time
taken to execute the grain. Note, if all atomic operations within a grain of
activity are dependent on results computed in preceding grains, then mov­
ing to a finer level of granularity will not raise the parallelism profile. In
effect, the inherent sequentiality of the algorithm enforces an upper bound
on the instantaneous parallelism that can be extracted. Hence, any algo­
rithm can be characterised in terms of its maximal-parallelism profile and
its granularity, and both of these are measures wh ich are independent of
the architecture on which an algorithm runs. Granularity, when not equal
to unity, would normally be expected to vary considerably from grain to
grain. However, for the purposes of this simple analytical model we assurne
it is constant.

www.manaraa.com

Multiprocessor Architecture 95

Characterising the architecture

In order to complete the specification of a parallel processing system, the
parameters of the architecture which define the performance of the system
need to be determined. In the same way that certain general assumptions
are made about the application in order to simplify the application model,
the overall model of an architecture also relies on a few basic assumptions.

The first assumption is that each processor has an internal dock, with a
period of t c seconds, and that each instruction executes in one dock period.
In a practical architecture instructions often have variable execution times,
and so t c may be looked upon as the average instruction execution time.
The second assumption is that the system contains n processing elements,
and is both homogeneous and orthogonal. This means that all process­
ing elements are identical, and have equal access to whatever mechanism is
used to connect the processors. The third assumption concerns the unavoid­
able cost of communicating values between concurrent processes, particu­
larly when they reside within distinct processors. Consider the sequence of
events which occurs when a process initiates a communication event. This
event may be the synchronised access of a shared variable, or it may be the
sending of a message from one processor to another. In a dataflow machine
communication occurs at the completion of every instruction, and typically
consists of moving a result packet from an execution unit to a matching
store. In addition, the input of data in a dataflow architecture is implicit,
since all 'instructions' which are not in astate of execution are normally
waiting for input. Therefore, whatever the model of execution, the time
taken to communicate can be modelIed in terms of the time taken to decide
whether the current process must wait, plus the time taken to de-schedule
the current process if indeed it needed to wait. We therefore define D to be
the decision time, and X to be the context-switching time.

In practice, the time taken to decide whether the communication event
can proceed immediately will depend on the mechanism for access to shared
variables, or on the method for examining the status of a communication
channel. The context-switching time will depend on the amount of context
information to be preserved during a process-change, and on the speed
with which this can be achieved. However, suppose for a moment that
each processor is capable of performing both of these tasks in zero time,
the results it produces are still required by another processor. The laws
of physics state that the transfer of information takes a finite time, and
therefore each machine must have a characteristic latency associated with
the movement of information from one processor to another. In practice
the latency, denoted here by L, will be determined by the interconnection
architecture. The latency can be expressed as a multiple of the instruction
cycle time t c , and hence we introduce the latency factor I = Lltc .

www.manaraa.com

96 Architecture of High Performance Computers - Volume II

Consider, therefore, what happens during the execution of a single grain
of activity. If we assume that a grain of activity is scheduled as a result of
the previously scheduled process becoming suspended, then the processor
must exchange process contexts before the scheduled grain can begin. As we
have mentioned already, this takes a time of X seconds or x = X/tc atomic
time intervals. This change of variable simply converts X into multiples of
the instruction execution time. Following the context switch, 9 instructions
are executed, and these take a time of 9 te• Finally, the grain terminates
when the current process decides that it must synchronise with another
process, and this incurs a time D. Again, we would prefer to measure the
decision time D relative to t e , and so we introduce the decision time factor
d = D/te• Therefore, the total time required to process a grain of activity
is t g

tg = te (g + x + d) (6.1)

Clearly different machines will have different values for x and d, and
these can be used to further classify multiprocessor systems. For example,
there are some multiprocessor architectures which are able to overlap the
time to access adecision variable with other useful processing. Further­
more, some machines are able to change context instantaneously, effectively
multiplexing their time between different processes at the hardware level.
Hence, using d and x, it is possible to define some simple and yet useful
classes of architecture.

The class of latency tolerant (LT) architectures is the class of all ar chi­
tectures for which d = O. Those architectures for which d i- 0 are termed
latency sensitive (L8). The class of state multiplexed (8M) architectures is
the dass of all architectures for which x = O. Conversely those architectures
for which xi- 0 are termed static state (88) architectures.

Within the dass of L8 architectures, the decision time is normally an
increasing function of n (the number of processors in the system), and such
architectures can be further classified according to the order of this function.
For example, in binary k-cube architectures d = O(Iog n) whereas in 2-D
mesh architectures d = O(n1/ 2).

To summarise this architectural model, we have a system in which there
are n processors and an intrinsic machine latency factor I. Each processor
takes a time d t e to effect a proceed/wait decision based on some shared state
information, and takes a time x te to exchange the context of a suspended
process for the context of a runnable process.

6.2.1 Speed-up and efficiency

In the design of multiprocessor systems we are concerned primarily with
the performance that can be gained through the use of parallelism. It is

www.manaraa.com

Multiprocessor Arcbitecture 97

therefore instructive to develop a theory for the expected speedup from
the model described above. First let us consider the processing efficiency
in our model. Since we define efficiency as the amount of useful comput­
ing performed in unit time, such overheads as context switching (x) and
decision-making latency (d) can have an adverse affect.

The true effect of x and d on performance depends critically on the
granularity of processing, g, and to model the degradation in performance
due to multiprocessing overheads we define the granular effieieney 1}g to be

g t c g 1
1} --- -

9 - tg - g + x + d - 1 + (~) (6.2)

Note the similarity to the equation for veetor effieieney (equation 10.3)
presented in chapter 10 of volume I, which exhibits the same form. Here
granularity is analogous to vector length and x + dis analogous to nl/2' We
can therefore correctly surmise that a granular efficiency of 0.5 results from
a granularity of x + d.

Furthermore, it is clear that architectures which are both latency toler­
ant and state multiplexed must have a fixed granular efficiency of 1.0, such
architectures are therefore 100% efficient.

Let us now consider the parallelism profile of figure 6.3, and how the ar­
bitrary level of parallelism, at each stage during execution of the application
algorithm, could be scheduled on a fixed number of processors. At stage i
in our model of computation there are 11"; parallel processes2 and these are
to be evaluated by at most n processors. We will assurne that each process
can be scheduled on any processor with equal ease. In cases where this is
not so, some reduction in performance may result due to imbalances in the
loading across the system.

In order to describe the behaviour of the whole system over time, we
use a simple graphical notation known variously as a spaee-time dia gram,
or Gantt ehart. These diagrams indicate what the machine resources of
interest (in our case processors) are doing at a particular instant in time,
and hence map out the utilisation of machine resources over time. The
space-time graph for the model system is shown in figure 6.4, and this plots
space vertically with time proceeding from left to right. Here it can be
seen that the degree of concurrency has been restricted by the available
hardware (since in many cases 11"; will be greater than n). This is achieved
by scheduling the parallel processes sequentially, in groups of n, during
each stage of the computation. Since all processes within each stage are

2The term proce88 is used to denote any activity which can occur in parallel with
activities of the same (or other) type. It therefore encompasses coarse-grained processes
in the Operating System sense, as well as fine-grained dataflow processes.

www.manaraa.com

98 Architecture of High Performance Computers - Volume II

Space
(Hardware Parallelism)

.. T7 .. ' 1
I f b

I

~--------- --~ I

n

1 A7 ..)' :
1 1 yt, r--

0: ~ V I

~ /: l\: v.; 9,---
V '/ 0 '/

I w
I

0: ... ~ v, ~ V

l\: '/ ~ V V
:\ ,"" ~ V

~ '/ t\:: /: V
0: 0 '/:'-- v

\
, ,

~ , ,
~tg----':

Time

Start of Stage I Start of Stage i + 1

Figure 6.4 Space-time diagram for an n-processor system

independent, the actual order in which they are evaluated does not alter
the result of the computation3 .

The dotted area in figure 6.4 represents the processor time used during
the execution of a single grain of activity, and the areas shaded with oblique
lines represent the processor time spent switching context and accessing
non-Iocal status information in order to synchronise with other processes.
Figure 6.4 shows a snap-shot of the activity from the beginning of stage i
to the beginning of stage i + 1, under the assumption that the average level
of granularity throughout stage i is gi {gi ~ I} and that the parallelism at
stage i is '1I'i. Therefore, the average nurnber of process grains that rnust be
allocated to each processor in stage i is '1I'i/n, and the number of time-slices
in stage " must be r '1I'i/n 1. Hence, the time within stage i during which
processors are busy, in an n-processor system, will be

(6.3)

If we consider the worst-case and best-case analysis of the total time, for
stage i on n processors, then we will get a lower bound and an upper bound
on speedup (and processor utilisation) for n processors.

3The outcome may be different for different schedules if the computation as a wh oIe
is not determinate.

www.manaraa.com

Multiprocessor Architecture 99

Worst-case analysis of speedup

The reason why grains of activity are processed in stage i + 1, rather than
stage '., is that they need at least one value wh ich is computed at stage i.
The grains of activity in stage i + 1 cannot be evaluated until the values
they require have not only been computed, but also transmitted (perhaps
through an inter-processor communication network) to the receiving pro­
cessor. In the warst case, the first grain of activity for every processor at
stage i + 1 requires a value computed during the last time-slice of stage i.
The worst-case critical path for the jlow-dependence between stages i and
i + 1 therefore extends across the intervallabelled fw in figure 6.4. Hence,
stage i + 1 cannot begin until a time ,tc seconds after the completion of
stage i, where , is defined as

,= max(d,/)

Therefore , represents the minimum separation of two successive stages in
the computation. In a latency sensitive architecture , will be equal to d, the
decision time factor, since in deciding that one process must suspend due
to a flow-dependence with stage i + 1 enough information is exchanged to
enable the first grain in stage i + 1 to begin execution. In a latency tolerant
architecture (d = 0) the latency of information transfer at the end of stage i
cannot be overlapped with any useful processing, and so , must be equal to
/. Therefore, the total machine time (active and inactive), consumed during
the execution of stage i on n processors, is given by Tr

Tt :::: Aftg + ("{ - d)tc

However, r 7r;jn 1 can be simplified, since it is a fact that for any x and y,

f;l x
{o:::: € < I} (6.4) = -+€

Y
Hence,

Tt< (~ + 1) tg + ("{ - d)tc (6.5)

This can be compared with the time required to process stage i, without
modification to the granular structure of the application, on a single proces­
sor in order to discover the speedup resulting from the use of n processors.
The time on a single processor is denoted Tl and is given by

(6.6)

Therefore, combining equations 6.5 and 6.6, the lower bound on speedup at
an arbitrary stage in the computation, S(n), can be defined as

S(n) der Tl > n7r(g + x + d)
Tn - (n + 7r) (g + x + d) + n("{ - d)

www.manaraa.com

100 Architecture of High Performance Computers - Volume II

At this point it is useful to define A, such that

grain time
A= .. .

mInImUm stage tlme g + x + j
g+x+d (6.7)

Hence, the equation for S(n) can be rearranged, thus

S(n) ~ n [1: AnJ (6.8)

This analysis produces a lower bound wh ich is independent of the dock
speed of the machine and dependent only on the number of processors, the
amount of parallelism in the application, the granularity of processing, the
cost of processor communications and an inherent machine latency factor.

Best-case analysis of speedup

Consider now the best case arrangement of activity within stages i and
i + 1, where the values required during the first time-slice within stage
i + 1 (on all processors) are prod uced d uring the very first time-slice of
stage i. Under this condition one might reasonably expect the latency
of transmitting these values to be overlapped with the processing of the
remaining grains of activity in stage i. The best-case critical path for the
flow-dependence between stages i and i + 1 therefore extends across the
time interval fb, again illustrated in figure 6.4.

An analysis of the time required to compute stage z·, in an n-processor
system, requires us to consider two cases. The first case to consider occurs
when all transmission latency can be overlapped by parallel activity within
stage i, whereas the second case occurs when there is some latency which
cannot be overlapped within stage i.

The case where all latency is overlapped with other processing can be
written as

Case 1
der Ai - (gi + x)tc > jtc (6.9)

From equations 6.3 and 6.4, we know that

Ai=(~+f)tg {O::::;f<I}

Clearly in the best case we must set f = 0, since this leads to the lowest
possible execution time on n processors and hence the greatest speedup.
Therefore, let

n 1I"i () Ai = -;;tg 6.10

The condition under wh ich case 1 holds can be derived from equations 6.9
and 6.10, resulting in

Case1
der 11".

-2. (gi + X + d) > (gi + X + j)
n

www.manaraa.com

Multiprocessor Architecture 101

which can be rearranged, and applied to an arbitrary stage of the compu­
tation, to define Condition 1 thus

Condition 1
der (9 + x + d) n < 11" or n< >'11"

9+ X +')'
(6.11)

Since we know that under Case 1 all flow-dependence latency from stage i
to stage i + 1 can be overlapped with other processing in stage i, the time
for Tt will be simply

and hence, using equation 6.10

Since we know what the time for stage i on one processor is, from equa­
tion 6.6, we can write down an equation for the best-case speedup (at any
stage of the computation) under Condition 1, and this turns out to be
exactly n, thus

S(n) der Tl < - n
T.n -•

(6.12)

Under the second case to be considered, not all of the latency involved
in the transfer of information from stage i to stage i + 1 can be overlapped
with other activity in stage i, and therefore the second case can be defined
as

Case2
der

(6.13)

Again, using equation 6.10, we can rearrange equation 6.13 and apply it to
any stage of the computation. This defines Condition 2 as

n>1I"(9+ X +d)
9+x+i

Condition2
der

(6.14)

It can be seen from figure 6.4 that the time between the start of stage i and
the start of stage i + 1, und er Condition 2, is determined by the inherent
machine latency and the time for the first time-slice. Therefore

Again we know the time to process stage i on a single processor, from equa­
tion 6.6, and hence we can express the best-case speedup under Condition 2
(at an arbitrary stage in the computation) as

S(n) der Tl (9+ X +d) - < 11" or S(n) ::; >'11"
Tn - g+ x+ ')' (6.15)

www.manaraa.com

102

S(n)

fl

fl
2

Architecture of High Performance Computers - Volume II

r--------Upper-bound

Lower-bound

&------------------r----------------------~n

fl

Figure 6.5 Upper and lower bounds on speedup in a multiprocessor

The upper and lower bounds on speedup can be plot ted graphically to
indicate the rate of growth in performance in relation to the number of pro­
cessors engaged in processing the parallel activities. Figure 6.5 illustrates
these bounds, with the shaded area defining the operating region of the
combined algorithm and architecture. It is not possible for any parallel sys­
tem to operate above the shaded region, and this is as one might reasonably
expect. The upper-bound on speedup states that linear speedup is the best
that is achievable, and again this appears reasonable. A poor algorithm
(low value for 11') or a bad architecture (high value for I and/or high value
for d) will move both the upper and lower bounds downwards.

It is worth noting that the asymptotic upper-bound on speedup (equa­
tion 6.15) is equal to the value of n (the number of processors) at which
the latency just begins to dominate the computation time. This value of
n therefore has a special significance, and defines an inftexion point in the
speedup curves. The inflexion point is denoted by n, and is defined by

n=A1I' (6.16)

The upper and lower bounds on speedup can now be combined to give a
general equation for speedup, thus

n[l~~] <s(n)~{ ~ for n ~ n
for n > n (6.17)

www.manaraa.com

Multiprocessor Architecture 103

Another interesting point to note is that the maximum difference be­
tween the upper and lower bounds actually occurs at the infiexion point
(n = n). This can be seen quite clearly, since for n < n the difference
between the upper-bound and the lower-bound increases with n, whereas
for n > n the difference decreases with n. As n -? 00 the upper and lower
bounds both approach the asymptotic maximum speedup of S(oo) = n.
Furthermore, if we substitute n = n into the lower-bound equation (equa­
tion 6.8) we find that the lower-bound on speedup at the infiexion point is
exactly n/2. This me ans therefore, that for a given set of parameters the
actual speedup can never be worse than half the maximum speedup.

The variations in speedup, between the upper and lower bounds, are
caused by random scheduling of parallel activities. If it were possible to
optimise the scheduling of operations, so that the latency associated with
actual dependencies between successive stages in the computation could be
overlapped as much as possible with normal processing, then the machine
would operate as elose to the upper-bound as the dependencies permitted.
It is unlikely that such scheduling could be performed during program exe­
cution, since the scheduling would almost certainly take longer to perform
than the computation itself. However, there may weIl be certain static op­
timisations that can be performed at compile-time, although in practice a
factor of two improvement is not a significant goal.

Naturally, the sales literature for commercial parallel mach in es normally
contains speedup curves showing the first (almost linear) section of the S (n)
curve, and the applications are likely to have been conveniently chosen so
that n is much greater than the actual number of processors provided.
Clearly, with realistic figures for I, d and x, machine users could construct
their own speedup curves, and then of course the results might be somewhat
different.

If the speedup for latency-sensitive static state architectures is examined
more closely it can be observed that since d =j:. 0, "(will be equal to d (since
d can not be less than I). This pro duces a value for .x of exactly 1, and a
simplified speedup relationship of

[1] { n for n < 11"
n 1 +; < S (n) ~ 11" for n ~ 11" (6.18)

In this relationship the level of granularity appears to be immaterial,
and indeed this is the case. Surely, however, something is missing in this
equation, since the realistic performance of machines with a large context
switching time on fine-grained applications must be low. The truth of the
matter is that S(n) measures only the relative variations in performance
as n is changed and does not take into account the processing overheads
associated with multiprocessing each processor. To complete the model,

www.manaraa.com

104 Architecture of High Performance Computers - Volume 11

we define CII to be the parallel processing gain, and this is essentially the
net speedup of a parallel system compared with an equivalent sequential
system. This is equal to the granular efficiency multiplied by the speedup,
hence

(6.19)

Using this measure of gain we can compare particular instances of parallel
systems, as opposed to simply comparing the rates at which performance
increases with the size of the system.

6.2.2 Extensibility

The high performance potential of multiprocessor systems derives directly
from the replication of processing elements within those systems, and the
concurrent operation of those processors on one or more tasks involving
one or more processes. A fundamental consideration for the designer of
multiprocessor systems is therefore the effect on the system of altering the
degree of replication, usually upward.

There are several aspects of the design which must be considered. Firstly,
as the number of processing elements in increased the total cost of the sys­
tem must also increase. It is obviously desirable to minimise this increase in
cost, and if the degree of replication is to be very large then a careful anal­
ysis of the rate of growth in hardware complexity (and hence cost) must be
performed. For example, we know that the cost (measured as a gate-count)
of a cross-bar switch grows in proportion to n2 (for an n x n switch). There­
fore, any multiprocessor which uses such a switch to connect the component
processors will be limited in the degree to which they can be replicated by
the cost of the interconnecting switch. We can therefore say that a cross-bar
switch is not extensible, since an n 2 cost function yields diminishing returns
on the investment in hardware. We might choose to alleviate this problem
by connecting the processors together in the form of a ring. The rate of
growth in hardware complexity for such a ring is elearly proportional to
n (with a sm all constant of proportionality). However, whilst the cost of
a ring structure is more than acceptable, the average processor-processor
latency is proportional to the circumference of the ring, n. Therefore the
latency factor, I, for a ring-structured multiprocessor will be proportional
to n (unless all processors only communicate with processors which are a
constant distance away). Since a low value for I is a desirable attribute for
a multiprocessor system, having a value for I which is linearly related to n
is counter-productive.

It is elear that one must consider two independent aspects of design when
assessing the extensibility of a particular multiprocessor machine. Firstly,
how elose to linear is the growth in hardware cost? And secondly, how do

www.manaraa.com

Multiprocessor Architecture 105

the basic machine parameters, such as 1, vary as the processing elements
are replicated?

A further important consideration, particularly for very large-scale mul­
tiprocessors, is the space occupied by the system as a whole and more par­
ticularly by the inter-processor wiring. For example, consider n processors
densely packed in a 3-dimensional volume. If each processor occupies a
constant volume c, then the space occupied by the whole system must be
at least nc. If the system is contained in a regular cube, then each side will
have length wh ich is at most O(n1/ 3).

Assume these processors are connected in the form of a binary k-cube
(k = log2 n), where a k-cube is defined recursively as two (k -1)-cubes, with
corresponding processors in each sub-cube having a direct connection (see
section 3.3.1). It should be possible to partition the volume containing the k­
cube into two equal-sized volumes containing n/2 processors. To satisfy the
interconnection requirements of the binary k-cube topology these two sub­
volumes must have O(n) wires passing between them. However, the plane
which bisects the n-processor system into two (k - l)-cubes has an area
which is at most O(n2/ 3), and it is therefore clear that O(n) wires cannot
pass through such a bisection. As a result, either the total volume occupied
by the k-cube must be a super-linear function of n, or the communication
bandwidth across each dimension of a binary k-cube must decrease as k
increases. In order to reduce the communication bandwidth some wires
crossing the dimension boundaries must be shared between a number of
processors on either side of the division, and this requires multiplexing logic.
In practice architectures with large binary k-cube routing networks have
yet to suffer significantly from this problem, although in machines such as
the Connection Machine [HiI85] and the NCUBE/10 [JRW86] (where each
circuit board accommodates a relatively large sub-cube) pin-boundedness
is certainly in evidence. The ability to extend a particular multiprocessor
architecture is clearly only important within a given range, since commercial
systems have a finite lifetime and the buyers of these systems have finite
budgets. However, in the Ion ger term, as configurations become larger, the
effects of scaling will become more inportant and architectures which exhibit
super-linear growth in volume will become less attractive. The extensibility
of multiprocessor architectures is still a subject which is of much research
interest, and the interested reader will find further information in Lipovski
and Malek [LM87].

6.2.3 Reliability and fault-tolerance

The reliability of high performance computer systems is often considered
to be an issue which is secondary to the most important task of design­
ing for maximum throughput. However, the operating efficiency of a high

www.manaraa.com

106 Architecture of High Performance Computers - Volume II

performance system is the product of its throughput and its availability,
and the availability of a machine depends on both the mean time between
failures (MTBF) and the average down time (ADT). This is nowhere more
important than in multiprocessor architectures since, as we shall see, the
MTBF of very highly parallel MIMD systems can be extremely poor.

It is a commonly held belief that multiprocessor architectures are in­
herently tolerant of faults since the replication of processing elements leads
to the natural availability of spares which can be switched in when the oc­
casional processor fails. Designing machines which are fault-tolerant (and
hence reliable) involves a great deal more than simply providing spares,
however. For example, each fault must be located before any hardware
reconfiguration can be performed, and when the fault has been rectified
the state of the computation prior to the occurrence of the fault must be
reinstated if fault processing is to be transparent.

Consider a hypothetical multiprocessor system containing 1000 process­
ing elements, each consisting of just 100 components. If it is assumed that
the failure rate for each component is 10-7 failures per hour (>' = 10-7)

then the MTBF for each component is 1/>' = 10 million hours. The MTBF
for the wh oIe system can be calculated as the MTBF for each component
divided by the number of components. Therefore, since there are 1000 X 100
components, the MTBF for the multiprocessor system will be just 100 hours,
or approximately 4 days. This calculation includes only failures caused by
faulty components. In addition there are transient faults caused by envi­
ronmental factors such as changes in ambient temperature, or even cosmic
radiation, and intermittent faults caused by poor production quality, and
these normally occur more often than component faults. In addition to the
problems of hardware reliability there are further problems associated with
software reliability, and these are compounded in multiprocessor systems by
the added software complexity of process synchronisation and communica­
tion. Diagnosing software faults in a multi-process environment can be a
particularly difficult task.

Improvements in technology could, in the future, reduce the failure rate
per gate within multiprocessor systems through the use of higher levels of
integration. However, higher levels of integration will also result in systems
with larger numbers of processors, and hence the problem of reliability will
remain. Since faults cannot be avoided, and prolonged unavailability of high
performance systems is unacceptable, the only alternative is to design high
performance multiprocessors for maximum resilience and fault-tolerance.

Designing for maximum resilience means discovering wh ich components
are least reliable, and either minimising their use or making them more
reliable. Designing for fault-tolerance means two things: firstly, designing
systems with the ability to detect the occurrence of an error, and secondly

www.manaraa.com

Multiprocessor Arcbitecture 107

imbuing those systems with the ability to correct and recover from an error.
There are many ways in which the detection and recovery from faults can
be implemented, for example one well-known method involves replicating
sensitive components (usually thrice) and accepting the behaviour exhibited
by the majority (this is known as triple-modular-redundancy, or TMR).
This level of redundancy can be very costly, and of course the logic which
compares the behaviour of the replicated modules mayaIso be faulty.

The techniques that are applied to uni-processor architectures to detect
faults, such as error-detecting codes (SECDED and parity checks), can be
applied within each processing element of a multiprocessor system. How­
ever, in a multiprocessor system there is a further problem caused by the
reliability of the network logic which connects processors to memories, or
processor-memory pairs with each other. It is weIl known that the most
unreliable elements in a computer system are the electrical connections be­
tween physicaIly distinct component parts, and this is particularly true of
intermittent faults. Hence, in a large multiprocessor system it is reasonable
to expect interruptions in the interconnection network, since these normally
contain large numbers of wires and connectors. Therefore the protocol for
data-movement through the network should be robust, and capable of de­
tecting and correcting transient errors. More permanent errars in the net­
work logic will result in one or more paths becoming unusable. This may
in turn reduce the connectivity of the network, and result in one or more
processors being unable to communicate with the rest of the system. This
can be overcome by designing networks with multiple paths between every
pair of connectable components, so that if one path becomes inoperable
another can be used.

Large high performance computers are sometimes designed with a par­
ticularly time-consuming application in mind. For example, the IBM GFll
project4 [BDW85] was designed primarily for the solution of numerical
problems in quantum chromodynamics. A calculation of particular interest
has been estimated to take approximately one year on the GFll machine,
and under these circumstances reliability is a very important consideration.
Since it is highly unlikely that a year-Iong computation could ever proceed
to completion without encountering a system failure, such lengthy calcula­
tions must be partitioned into a sequence of computational segments which
each occupy a time-span somewhat shorter than the system MTBF. At the
end of each segment the state of the computation must be saved, allowing
the computation to be rolled back to a previously known correct position
and re-started in the event of failure. This ensures that the amount of
time wasted as a result of each system failure is limited to the time for one

4The component count for the GFll machine ia approximately 4 X laS, 1296 of which
are located in the network.

www.manaraa.com

108 Architecture of High Performance Computers - Volume II

segment of the computation.

6.3 Summary

In conclusion, we have seen that in order to achieve significantly greater
performance than has been possible with uni-processor machines the next
generation of high performance computers must use multiprocessor or mul­
ticomputer architectures, and these are likely to incorporate large numbers
of processing elements. The design issues which are important for these
types of system have been discussed, and the expected performance has
been modelled. This model emphasises the difference between granular effi­
ciency and speedupj granular efficiency defines the slow-down which occurs
when a single processor emulates a number of virtual processors, whereas
speedup is simply the ratio of execution times for the same algorithm on
one processor compared with n processors. This can never be greater than
unity. Measured execution times, however, can sometimes yield parallel
processing gains which are greater than n. This apparent 'super-linear'
speedup is caused by side-effects, such as reduced working-set sizes, or the
improper comparison of a sequential pro gram and its parallelised version.

We have also seen why the reliability of multiprocessor architectures
cannot be ignored, and briefly mentioned the issues to be considered when
designing fault-tolerant multiprocessor systems.

The following two chapters discuss the two major categories of mul­
tiprocessor architecturej those which use shared-memory to enable their
processors to interact, and those in which processors communicate through
message-passing.

www.manaraa.com

7 Shared-memory Multiprocessors

Architectures which incorporate a number of tightly-coupled processors of­
ten seem a natural choice for the computer designer in search of very high
performance. For some applications SIMD vector or array processors are
just not suitable, and a number 'of distinct instruction streams are required.
However, multiprocessor architectures all face the fundamental problem of
data sharing and process synchronisation, problems which can be illustrated
by an analogy drawn from the experience of human organisation.

For a group of people to cooperate closely on a complex task, the task
must be partitioned into a number of simpler sub-tasks that are of roughly
equivalent complexity. During the course of their work the cooperating par­
ties may need to exchange information in order to coordinate their activities.
In some instances the results of one person's endeavours might have to be
made available at all times to everybody else who is involved. Consider, for
example, a man calculating prices in a financial marketj these prices must
be displayed and continuously updated throughout the course of a day's
trading. In a similar way, cooperating processors in a multiprocessor sys­
tem share the computational workload and occasionally communicate with
each other. If a number of processors require access to the same piece of
information then each must have Read and Write access to a shared area
of physical memory. In this chapter we look at how this can be achieved,
what problems arise and, for three important categories of shared-memory
multiprocessor, we describe example machines in detail.

7.1 Shared-memory architecture

Probably the most attractive feature of shared-memory multiprocessors,
seen particularly from within the existing programming community, is the
flexibility and relative ease with which many different programming styles
can be accommodated. This sterns from the availability of a 'global state'
which, together with elementary process synchronisation primitives, permits
a full range of parallel programming paradigms to be supported. All shared­
memory multiprocessor systems, although implemented in many different
ways, are logically equivalent to one of the two abstract models illustrated
in figure 7.1. These differ only in repect of their implementationj in case (a)
the cost of accessing each memory location in the machine is the same, from
wherever the re quest emanates, and in case (b) access to non-IDeal memory

109

www.manaraa.com

110 Architecture of High Performance Computers - Volume II

Non-Local
Memory

Memory
Access

Access
Switch

Switch

(a) Orthogonal (b) Oistributed

Figure 7.1 Basic shared-memory architectures

incurs an additional time penalty for all processors. The programmer's
model of this abstract machine is extremely simple, and in most cases the
programmer is unaware of any physical distribution of memory. This type
of multiprocessor architecture is therefore particularly flexible, lending itself
weIl to the porting of parallel algorithms between different shared-memory
architectures.

The options open to the implementor of a shared-memory multiprocessor
revolve around the mechanism for providing a path between each processor
and each memory Iocation, and the mechanism for ensuring temporary ex­
clusive access to regions of memory when critical data-structures are being
processed. Secondary issues include the balancing of computationalload be­
tween the processors, deciding on whether each processor should timeshare
its activity between more than one process, and the allocation and mapping
of the global address space. These secondary issues present themselves in
the design of any MIMD architecture, and were discussed in chapter 6.

Shared-memory multiprocessor systems can be classified in many ways.
For example, it is possible to classify them according to whether they have
strictly public memory or some public memory and some private memory,
or on the basis of the language model used. However, since the performance
of a shared-memory multiprocessor is so closely linked to the architecture
of the processor-memory interconnect, this will be the basis of the broad
classification used in this chapter. The range of possible interconnection
methods pro duces a spectrum of generic shared-memory multiprocessor ar­
chitectures, varying in cost, connectivityand maximum size. At the low-cost
end of the spectrum we find multiprocessor systems constructed with lit-

www.manaraa.com

Shared-memory Multiprocessors 111

Figure 7.~ Shared-memory architecture using a common bus

tle or no parallelism in the interconnect. In such a system the memory
requests of all processors must be serviced sequentially, and this places an
upper bound on the number of processors that can be supported by this
type of interconnect. At the highly-connected end of the spectrum there
we find multiprocessor systems with interconnection mechanisms capable
of servicing all memory requests in parallel (assuming distinct addresses).
Unfortunately, the interconnection hardware in these architectures becomes
extremely costly as the number of processors increases, and again this effec­
tively places a vague upper bound on the number of processors that can be
supported. Somewhere between these two extremes of cost and connectivity
there are a dass of architectures with interconnection schemes that are not
Jull connection networks and where the size (and hence the cost) remains
manageable for large numbers of processors. In the following sections of this
chapter we look at these three categories of shared-memory multiprocessor,
and for each category we discuss one example machine.

7.1.1 Sequential-access shared-memory systems

Conceptually, a sequential-access shared-memory architecture is one in wh ich
a number of processors share a common route to gain access to a global
memory space. This is illustrated in figure 7.2, which shows a number of
processors connected to a number of memory modules via a common bus.
This is a natural extension of conventional single-processor buses, which
were designed originally for their low-cost and high degree of flexibility. The
major shortcoming of a common bus, in a shared-memory multiprocessor,
is self evident; the data transfer capacity between processors and memories
is determined by the bandwidth of the bus, and is therefore constant. This
limits the number of processors that can be usefully incorporated into such
a system, and hence fixes an upper limit on performance.

www.manaraa.com

112 Architecture of High Performance Computers - Volume II

Figure 7.9 Multiprocessor system connected by a star-point network

The low cost of bus-structured multiprocessors has however proved to
be advantageous for a number of small-scale parallel systems, yielding high
performance/cost ratios without any pretensions of scalability. For configu­
rations of between 1 and 20 processors, a bus-structured architecture can be
a most effective interconnection mechanism, as witnessed by the evolution
of commercial systems such as the Sequent Balance 8000 and the Encore
Multimax, to name but two.

A sequential memory architecture can also be implemented with a star­
point network, as illustrated in figure 7.3, although the cost is generally
higher than a bus. An example of a star-point network is the MU5 Exchange
[MI79], in which the MU5 and PDP-11 computers shared memory, 1/0 and
Block-Transfer devices through a 100ns cycle-time packet-switched network.

With any shared resource, access confiicts can occur, and some me ch­
anism for arbitrating between contenders for these resources is required.
Two options are open to the designer; either a centralised mechanism or a
distributed mechanism. In both cases a confiict resolution strategy is re­
quired. System costs can often be minimised by having a central arbitrator,
although this adversely affects reliability since the system then becomes re­
liant on a single component. A distributed arbitration mechanism increases
the cost of each processor, but prornotes reliable or fault-tolerant behaviour.
The performance of the arbitration strategy mayaiso be improved by dis­
tributing the mechanism for performing arbitration amongst the contenders
for the resources.

www.manaraa.com

Shared-memory Multiprocessors 113

Conflict resolution strategies

In order that utilisation of the available bus bandwidth be maximised, the
resolution of simultaneous requests far the bus must be performed in a time
which is less than the bus cycle time. This means that the algorithm for
assigning priority to bus devices must be implemented in hardware.

Many algorithms for assigning priorities have been devised, and their
characteristics are well-known. Probably the simplest algorithm is the fixed­
priority algorithm. As its name suggests, the fixed-priority algorithm as­
signs a fixed priority to each contender for the shared resource and allocates
cycles accordingly. This algorithm is useful in single-processor bussed archi­
tectures for assigning permanent priorities to time-critical devices, such as
disks, but its lack of 'fairness' makes it particularly unsuitable for multi pro­
cessor systems. Fairness can be defined in terms of the standard deviation
of average wait-times perceived by contending devices, with a low standard
deviation indicating a fair arbitration algorithm. For example, an algorithm
which always gives rapid attention to some devices and always gives poor
attention to others, will have a significant spread of average wait-times.
Conversely, an algorithm which does not favour any particular device, or
group of devices, when allocating bus cycles, will have approximately equal
wait-times on all devices.

A much fairer method of sharing the limited resources of the bus is the
fixed time-slice algorithm, in which bus cycle x is allocated to processor
I x In regardless of whether that processor is requesting a cycle. Hence,
each device gets one cycle in n, and may have to wait up to n - 1 cycles
before receiving attention. The relatively poor bandwidth available to indi­
vidual processors makes this scheme inefficient when devices are operating
sporadically, or in bursts.

The fixed priority and fixed time-slice algorithms are essentially static
algorithms; more sophisticated algorithms resort to using dynamic device
priorities in order to combine the throughput of static priority with the
fairness of time slicing. Two important algorithms of this type are the least
recently used (LRU) and the cyclic priority (CP) algorithms. The LRU
algorithm is a well-known algorithm from Operating Systems [Lis88] which,
as its name suggests, assigns the lowest priority to the processor which used
the bus most recently and assigns the highest priority to the processor which
used the bus the least recently. The usual way to implement this is with
a central arbitrator containing an ordered list of bus devices. Whenever
a bus device is allocated a bus cycle, the device given the cycle is placed
at the bot tom of the list. Then arbitration is performed by selecting the
highest requesting device in the list. Conversely, the CP algorithm can
be implemented as a distributed arbitration algorithm through the use of
a closed daisy chain mechanism. The modification of priority occurs by

www.manaraa.com

114 Architecture of High Performance Computers - Volume II

assigning the highest priority to the device whose position in the chain is
immediately after the device which last used the bus.

Finally, the algorithm with the minimum average wait-time (and also
the smallest spread of wait-times) is the first-come-first-served algorithm.
However, this requires the order of occurrence of requests to be known in
order to operate correctly, and this is difficult to discern when multiple
requests can occur with very little time interval between them. In practice
this algorithm is not used for bus arbitration, even though it is optimal.

Effects of scaling

One can assess the usefulness of sequential access shared-memory multipro­
cessor systems by analysing how the cost and throughput vary in response
to changes in the number of processors in the system. The cost, C, can be
defined quite simply in terms of the basic cost of the bus backplane, b, plus
the cost of n processors. The cost of each processor is equal to the cost of
the processing hardware p, plus the cost of the bus interface logic /. Hence,
for an upper bound of N processorSj

C = b + n(p + l) {o ~ n ~ N}

If p and I are genuinely constant then C represents a linear cost function,
within the specified bounds. The upper bound N is determined by three
factorsj the bus bandwidth, physical constraints on the length of the bus,
and electrical fan-out limitations. The bandwidth available on the bus de­
pends on the technology used in the bus interface logic of each bus device,
and on the protocol used to implement global read and write cydes. The
bandwidth required by each processor depends on the frequency with which
requests are generated. The propagation time of signals on the bus limit
the length of each bus signal to around 1 metre, and this limits the size of
a bus-connected system to a single card-frame. The fan-out of the devices
used in the bus interface circuitry will also place a limit on the maximum
number of bus devices which can shared the same electrical signals. In
practice, this will be on the order of twenty devices.

In theory the throughput of a sequential access device, such as a common
bus, is equal to t;l, where tc is the bus cyde time. However, in practice
this is reduced by a utilisation factor f {O ~ f ~ I}. This reduction in
throughput is caused by occasional requests failing after being allocated a
bus cyde. In a multiprocessor system this occurs when memory modules are
'busy' when they receive requests. A memory module is considered 'busy'
if it is performing a cyde on behalf of another processor, or if the location
requested is 'locked-out' on behalf of another processor in order to ensure
exdusive access to a shared data structure. This occurs during spin-lock

www.manaraa.com

Shared-memory Multiprocessors 115

operations (see section 7.3.2), and can result in a serious degradation of bus
performance.

Bus utilisation can be improved by providing larger numbers of memory
modules, hence reducing the prob ability of modules being busy, and by
increasing the re-try intervals for locked-out memory requests exponentially.

The main points to note about bus-connected multiprocessor systems
are that, however weIl engineered they may be, the maximum configuration
is limited to around 20 processors with current technology, and the prospects
for improving this with future technology are not good. In addition to the
problem of scalability, synchronising processes through flags held in memory
can seriously degrade system performance. In spite of these difficulties se v­
eral commercial systems have emerged, and the innovative techniques used
to circumvent the above-mentioned problems are explained with reference
to one particular machine, the Sequent Balance 8000, in section 7.2.

7.1.2 Highly-connected shared-memory systems

A natural method of alleviating the bottleneck of a single bus in a shared­
memory multiprocessor is through the provision of multiple buses, and this
technique has the added advantage of introducing some degree of fault­
tolerance to the interconnection mechanism (often the most error-prone
component in any system). The multiple-bus technique was used in the
Pluribus system [KEM*78], a multiprocessor architecture in which small
numbers of Lockheed SUE processors were connected to independent pro­
cessor, memory and 1/0 buses. Although Pluribus used multiple buses
primarily to improve system reliability, an important consideration in high­
performance architectures, the possible application of this technique for
increasing the processor-memory bandwidth is obvious.

The number of buses in a multiple-bus architecture could be extended
until there are as many buses as there are shared memory modules, at
which point the interconnection between processors and memories effec­
tively would become a cross-bar switch. This is the other extreme of con­
nectivity from the sequential-access mechanism considered earlier, and one
which has been used in several small and medium sized systems. This ap­
proach to processor-memory interconnect is really only suitable for a 'herd
of elephants' configuration (as opposed to an 'army of ants' configuration)
in which a relatively sm all number of powerful processors are used (as op­
posed to a very large number of low-powered processors). Probably the
most influential multiprocessor system to use this form of interconnection
between processors and memories was the C.mmp system, although sub­
sequent machines such as the Stanford S-1 [Wid80] and the commercially
available IP-l have also used this interconnection technique.

www.manaraa.com

116 Architecture of High Performance Computers - Volume 11

7.1.3 Scalable multiprocessors

The machines we have looked at so far in this chapter have been relatively
smaIl-scale systems, comprising less than twenty processors. Architectures
which connect their processors via a single sequential channel, such as a bus,
are limited by bandwidth constraints, electrical properties and physical wire
lengths. Conversely, architectures which solve the bandwidth problem by
using cross-bar switches suffer from a growth in hardware complexity which
is proportional to n 2• Somewhere between these two extremes lies a family
of architectures with better than n2 hardware cost as weIl as communication
mechanisms which can support much greater numbers of processors. These
systems rely on the use of multi-stage interconnection networks for the
manage ability of their complexityl. Whilst it can be shown that there are
still problems in scaling multiprocessor systems connected by multi-stage
interconnection networks, quite large systems can be constructed using this
style of architecture.

In the following sections we examine the architecture of three very dif­
ferent shared-memory multiprocessors, each of which uses one of the three
types of processor-memory interconnect described previously. We ex amine
the design decisions involved and assess their performance and scalability.

7.2 The Sequent Balance 8000

The constraining nature of common-bus multiprocessor architecture stimu­
lates the ingenuity of designers, who then produce sophisticated solutions.
The Sequent Balance is a good example of this phenomenon, as it incorpo­
rates special techniques for providing very high bus bandwidth as weIl as
for supporting primitive locking operations.

The designers of the SB8000 started out with the knowledge that in
previous multiprocessor systems each additional processor contributed only
0.8 X the actual performance of each processor already in the system.
Hence, points on the speedup curve for such a system would typically be
1, 1.8, 2.5, ... This diminishing return made each successive processor less
and less cost effective. Therefore, careful engineering of the critical compo­
nents is required in order to alleviate this problem, and the remainder of
this section describes how this is achieved in the Sequent machine.

The SB8000 system is an homogeneous multiprocessor system, capa­
ble of supporting between two and twelve identical processors, based on the
National Semiconductors NS32032 32-bit microprocessor. Each processor is
supplied with a floating-point coprocessor and memory management hard­
ware. All processors share a number of common memory modules via a

10ther interconnection structures, such as trees of processors, have been proposed
[Lei85,IEH*85] but are beyond the scope of this book.

www.manaraa.com

Shared-memory Multiprocessors

Multibus
1/0

SubSystem

SB 8000 System Bus

Ethernet

SCSI Bus

Disc
Storage

Figure 7.4 Organisation 01 the Sequent Balance 8000

117

26.7 M byte/s system bus, providing up to 28 Mbytes of primary storage.
All processors share a single copy of the Unix-like operating system, and
in order to reduce global memory contention each processor has a private
cache for storing recently used instructions and data. This is a two-way
set-associative cache with an 8 Kbyte capacity. Transfers between main
memory and the cache occur in units of 64-bits, yielding an effective hit-ratio
of 95 per cent. The block structure of the SB8000 is shown in figure 7.4.

The SB8000 has an orthogonal architecture, which means that all mem­
ory, 1/0 and interrupt resources are accessible to all processors. These
resources are allocated dynamically. Hence, a process scheduler assigns pro­
cessors from the pool of processing resources, earning it the title 'processor
pool' architecture. The fair distribution of work requires careful hardware
and software design to ensure that there is good utilisation of all resources,
especially the pool of processors. Central to this theme is a custom co-

www.manaraa.com

118 Architecture of High Performance Computers - Volume II

processor chip, known as the System Link and Interrupt Controller (SLIC),
which is optimised to perform tasks which normally cripple the performance
of less sophisticated bus-structured multiprocessors.

7.2.1 Cache consistency

Since each processor has a private cache, the problem of maintaining cache
consistency arises. It is possible for multiple copies of shared data items to
exist in two or more caches throughout the system and, when a processor
updates its own copy, those belonging to other processors must reflect this
change. Naturally the master copy held in global memory must also be
updated. Therefore the SB8000 cache employs a 'write through' technique,
causing each processor write cyde to appear on the system bus. Then, when
aglobaI write cyde occurs, two things happen; firstly the correct location in
global memory is updated and, secondly, all cached entries for that location
are invalidated throughout the machine. This is achieved through the use of
a technique known as 'bus watehing' , in which the control logic associated
with each cache monitors every bus cyde in order to detect write cydes to
memory locations cached locally. Hence, by comparing bus addresses with
the addresses of blocks cached locally, it can recognise when writes to such
blocks occur. Invalidating the cache entry, rather than assimilating the data
on the system bus, simplifies the logic required, but me ans that subsequent
re-reading of data is required.

In the SB8000 it has been observed that write-cydes constitute 10-
15 per cent of all processor cydes and, although this is a relatively small
proportion, if each processor waited for the completion of its write cydes
before continuing processing, a significant amount of time could be wasted.
The cache therefore incorporates a write buffer, as illustrated in figure 7.5,
to permit the processing of write-through cydes to proceed in parallel with
subsequent instructions.

Clearly, the write-through operation imposes a certain degree of se­
quentiality on the system as a whole, since the address comparison which
every cache controller must perform effectively steals a cyde from all caches
simultaneously. This is the price which must be paid for maintaining data
consistency in a transparent multi-cache environment.

7.2.2 The SLIC

Every processor, memory controller, 1/0 channel and bus controller has
associated with it a System Link and Interrupt Controller (SLIC) chip.
The SLIC is effectively a coprocessor providing the functions required in a
shared-memory multiprocessor, but not present in commercially available
microprocessors (such as the NS32032). In addition to providing these extra

www.manaraa.com

Shared-memory Multiprocessors

Memory
Management

Unit

Figure 7.5 Structure 0/ a Balance 8000 processor card

119

System
Bus

functions, the SLIC also contributes to the parallelism in the system by
operating independently from the system bus.

The functions of the SLIC are three-fold. Firstly, between them the
SLIC devices manage the distribution of incoming interrupts, and they do
this by dynamicallY assigning each interrupt to the processor which is cur­
rently executing the lowest priority task. In order organise the distribution,
all controllers communicate with each other across a dedicated serial bus,
somewhat similar in operation to an Ethernet. The structure of a SLIC chip,
and its connections to the SLIC bus, are shown in figure 7.6. It is interesting
to note that some of the most time-critical functions of this shared-memory
architecture are actually implemented within a message-passing multiple­
coprocessor sub-system, and not through the shared memory.

The second function of the SLIC, and another time-critical fU'1ction, is
the manipulation of system-wide semaphores. As shown in figure 7.6, each
SLIC contains a cache of semaphores. Effectively these are single-bit protec­
tion Hags, through which all high-level mutual exclusion and synchronisa­
tion facilities are implemented. An important consequence of implementing
processor synchronisation primitives with dedicated hardware is that spin-

www.manaraa.com

120 Architecture of High Performance Computers - Volume II

Processor Interface

SLiC Chip

1/0

Transmitter

... ---+----..... ------;1--..... SLiC Bus

---t----------'---. SLiC Clock

Figure 7.6 The System Link and Interrupt Controller

lock operations do not need to access global memory via the system bus.
Spin-Iocks can present quite a heavy load on the system bus, and therefore
any technique which removes this load must improve the performance of the
whole system. Note however, that this migration of functionality can only
improve memory bandwidth, and cannot solve the performance problem
caused by the 'busy waiting' which occurs during spin-lock operations.

The third function of the SLIC is to act as a supervisory agent and com­
municate with other SLICs to perform system diagnostics and debugging.
It can, for example, take the resources for which it is responsible 'off-line'
and notify the system. Similarly, when a new processor card is inserted,
the SLIC informs the other resources via the SLIC bus, and the system
automatically re-configures itself without further physical modification.

The SLIC chip is implemented using 3J.lM CMOS gate-array technology,
and the SLIC bus is implemented as a two-wire multi-drop seriallink using
wired-OR logic and incorporating collision-detect circuitry. The SLIC rep­
resents a very useful innovation, contributing heavily towards the efficient
engineering of the sequentially accessed shared-memory of the SB8000. The

www.manaraa.com

Shared-memory Multiprocessors 121

other major component is of course the system bus.

7.2.3 The SB8000 system bus

Designing a shared-bus for a multiprocessor machine is a difficult task,
and one made more difficult by the need to reconcile two fundamentally
conflicting design criteria. The bus must provide high bandwidth and sym­
metrical access between all processors and system resources, including 1/0
sub-systems, and yet it must do so with the minimum interfacing complexity
since low-cost is one of the primary reasons for choosing a bus interconnect.
In order to achieve the necessary raw bandwidth to support up to twelve
processors the SB8000 system bus uses a 10 MHz synchronous protocol,
and to reduce the complexity of the interface hardware to less than 20 chips
it uses a time-multiplexed address and data path. The interface logic is
implemented in '74F series' (fast) TTL.

If each processor retained control of the bus throughout the complete
duration of a memory operation, a large proportion of the bus bandwidth
could be wasted. This is because while the bus can transfer arequest to
the memory and a response to a processor in 100 ns, the latency of each
memory operation is around 300 ns. Therefore, the bus incorporates a split
protocol in which processors relinquish the bus between issuing requests and
receiving responses. In effect the bus masters send request packets to the
bus slaves, who in turn send response packets back to the masters. Each
packet transfer takes 100 ns, with the exception of a write-response, which
is simply an event with no associated data, and which is implemented via
the control path. Write responses can therefore occur in parallel with other
bus transfers, again helping to maximise the useful bus throughput. The
bus protocol also permits data transfers to take place in variable-Iength
packets up to 8 bytes long.

Decoupling the bus protocol from the memory latency enables multiple
memory controllers to be interleaved, since several requests (hopefully to
different controllers) can be active at the same time. The combination of
these techniques results in a quoted peak bandwidth of 40 M bytes/s and a
quoted sustainable bandwidth of 26.7 M bytes/so

A protocol which splits requests and responses can lead to situations
in which multiple requests arrive at a single destination (a memory con­
troller or 1/0 bus adapter) in rapid succession, and at a higher burst rate
than they can be serviced. In the SB8000 this problem is solved by pla­
cing request and response queues in all destination devices. Then, having
provided queues to smooth out transient peaks in the flow of requests and
responses, a mechanism for preventing these queues from overflowing is
required. There are two ways this problem can be approachedj the first in­
volves sending negative responses to a requesting device if there is no room

www.manaraa.com

122 Architecture of High Performance Computers - Volume 11

in the request buffer to store an incoming request. Then, so me time later,
the same request must be re-tried. This is a form of 'busy waiting', since
extra cycles are introduced to perform periodic checks on the status of the
destination re quest queue. If contention for one memory module is high,
these re quest and negative response cycles will soak up a large proportion
of the available bus bandwidth. The second way only allows arequest to
be issued if a free place in the destination request queue exists. This means
that every requester must maintain local information on the status of all
destination queues. An unfortunate consequence of this is that the logical
complexity if each bus requester then becomes proportional to the size of
the system, and system complexity becomes non-linear. The advantage is
that, even when the bus is experiencing very heavy loading, each bus cycle
carries useful information. The Sequent Balance 8000 uses the latter tech­
nique in the knowledge that the slightly non-linear logical complexity has
very little bearing on the actual size or cost when system sizes are limited
by bus bandwidth.

7.3 C.mmp

In 1971 a project was initiated at Carnegie-Mellon University to design the
hardware and software for C.mmp [WB72], a multiprocessor system using
minicomputer processors (DEC PDP-lls). Gnce completed, the system
ran for about ten years and proved to be a valuable research tool for both
computer architects and users. C.mmp was intended to be symmetrieal, so
that replicated components could be treated as an anonymous pool, with
no one of them being special in any way. It was also to be a general purpose
system, in which parallelism could be exploited at both the task and the
process level. The system therefore contained a pool of processors, and
a number of independent tasks, each of which could contain a number of
parallel (and interdependent) processes.

The symmetrical nature of the hardware can be seen from figure 7.7
which shows the configuration of the system. The 16 PDP-ll processors
(PO-P15) were connected to 16 independent memory banks via a crosspoint
switch (Sm) which permitted any processor to access any memory. A path
through the switch was established independently for each memory request
and up to 16 paths could exist simultaneously. Memory contention was
handled at the inputs to the switch. The interrupt mechanism was also
symmetricalj every processor being able to interrupt every other processor
(including itself) with equal ease.

As a means of reducing switch and memory contention and providing
faster memory access, the design permitted the inclusion of a cache memory
in each processor. The problem of cache consistency, which we observed in

www.manaraa.com

Shared-memory Multiprocessors

Unibus Extensions

Memory Switch
Sm

Unibus Switch
So

Figure 7.7 Overall organisation 0/ C.mmp

123

considering the design of the IBM 3090 (volume I section 3.3.3) and the
Sequent Balance (section 7.2.1), was to be solved by only creating cache
entries for information taken from read only pages. This would have in­
cluded all instructions, of course. Simulation studies showed that a small
cache of 256-512 words would capture 79-90 per cent of eligible references
and give an overall improvement in system performance of 10-40 per cent.
In practice cost prevented the inclusion of cache stores in the system actu­
ally constructed and code sharing among all processes in a multiprocessor
application proved to be a significant problem [WH78].

Symmetry in software implies that there must be no master-slave rela­
tionship among the processors. Thus on C.mmp any processor could execute

www.manaraa.com

124 Architecture of High Performance Computers - Volume II

any part of the operating system at any time, subjeet to mutual exclusion
on aeeesses to shared data struetures. At the user level, a job eould exe­
eute on any proeessor, and would frequently switch from one processor to
another many times during execution.

The requirement for a general purpose system proved more difficult to
satisfy [WH78]. For example, it was possible to partition proeessors and
memories but not to run the operating system kernel (Hydra) in more than
one partition. The major obstacles to this were the difficulty of providing
meaningful communication between what would be, in effect, two separate
operating systems, and the lack of sufficient peripher als to allow each par­
tition to have an adequate complement of devices. Access to peripherals
was by a second type of switch (Su in figure 7.7) which allowed one or more
PDP-ll Unibus extensions to be connected to any one of the processors'
Unibusses. In order to avoid the cost of determining dynamically whieh of
the processors was currently managing a particular peripheral, the alloca­
tion of a Unibus extension to a processor was made on a relatively long
term basis (from a fraction of a second to several hours).

7.3.1 The small address problem

The 16-bit address space of the PDP-ll allows user programs to address
no more than 64 Kbytes of memory. In C.mmp the amount of memory
available was much larger than this, however, amounting to 3 Mbyte. Some
form of address relocation was clearly necessary, but the situation here was
the reverse of that pertaining in most virtual addressing systems, where a
processor can address more memory than is provided in hardware.

The software/hardware facility provided in C.mmp to solve this prob­
lem involved partitioning the address space of each processor into eight 4
Kword pages. A user was permitted an indefinite number of pages, but
could address only eight of them at any instant. Facilities in the operating
system allowed the user to designate dynamically wh ich pages were to be
addressable. Relocation of these pages into an overall 21-bit address space
was achieved through the use of four sets of relocation registers, known as
the Dmap (figure 7.7). Two bits in the processor status word (inaccessi­
ble to user programs) were used to provide the additional two address bits
available on the Unibus. These bits then selected one of the four sets of
relocation registers and the top three bits of the 16-bit user address selected
one of eight registers within the set.

At the outset of the project it was assumed that the 16-bit limitation
would be offset by the ability to create multiprocess programs, and that a
typical program would be organised as a large number of processes, each of
which would only need to address a small amount of memory. This turned
out to be true for code in many cases (although multiprocess algorithms did

www.manaraa.com

Shared-memory Multiprocessors 125

not always produce small programs), but less often for data. In addition,
the fact that the programmer always had to be aware of page boundaries
meant that the system was less than ideal. C.mmp was capable of exe­
cuting at a rate of about 6 MIPS and was comparable in size to the CDC
6600. Consequently, users expected both machines to cope with problems
of comparable size. As we noted in volume I section 2.2

"There is only one mistake ... that is difficult to recover from
- not providing enough address bits ... "

7.3.2 Locks and synchronisation

A multiprocessor operating system is required to schedule and coordinate
the activities of the individual processors. In Hydra the information neces­
sary to make these decisions was contained within a shared data base, and
the parts of Hydra which made these decisions could be running on several
processors simultaneously. In order to maintain consistency of the data base
it was essential that while one processor was accessing or, more particularly,
updating the data base, all other processors be prevented from accessing or
changing it. The mechanism adopted involved the use of lacks on the data
base and portions of programs which accessed lockable data items were re­
ferred to as critical sections. On entering a critical section the program first
had to check that the lock was not set, and otherwise wait, then set the lock
(Dijkstra's P operation on a semaphore [Dij65]) and on leaving the critical
section, reset the lock (Dijkstra's V operation). At one extreme the whole
data base could be controlled by a single lock, whereas at the other extreme
every data item could be individually locked. The former case would have
precluded any parallel operations on the data base, of course, while in the
latter case the overheads of performing the locking operations would have
been prohibitive. In practice the number of critical sections in Hydra lay
in the range 2-7, depending on the path taken through the scheduler. Sim­
ilar mechanisms were used in user program where the synchronisation of
communication between individual processes was achieved through access
to lockable shared data items.

A question which immediately arises is what to do with a processor
which is waiting to enter a critical section. A number of different solutions
were tried on C.mmp. The mechanism which gave fastest entry to a critical
section was the spin-lock. In PDP-ll assembly code the P and V operations
for a spin-lock are as follows

P: CMP SEMAPHORE
BNE P
DEC SEMAPHORE
BNE P

is SEMAPHORE = 1 ?
loop if not = 1
decrement SEMAPHORE
if < 0, return to P

www.manaraa.com

126 Architecture of High Performance Computers - Volume II

V: MOV #1, SEMAPHORE : reset SEMAPHORE to 1

Thus a processor which is attempting to enter a critical section polIs the
value of SEMAPHORE looking for a value of 1. When it finds a value of 1
it decrements SEMAPHORE, and then checks that its value is 0 before pro­
ceeding. If the value is < 0, this implies that another processor which was
also polIing SEMAPHORE has gained access to the data structure and the first
processor must continue to wait.

There are two major drawbacks to using spin-locks. Firstly, a processor
which is polling is not doing any useful work. Secondly, it is consuming
memory cycles in the bank containing the semaphore value and, if several
processors are polling on the same semaphore, memory bandwidth is rapidly
consumed. In the worst case the processor currently operating on the locked
data structure will also be accessing this same memory bank and will be
slowed down as a consequence. In more re cent multiprocessor systems such
as the CRAY X-MP (volume I section 7.2) and the Sequent Balance (sec­
tion 7.2) this problem does not arise because the synchronisation registers
are not part of main memory. The use of standard PDP-ll processors
as components of C.mmp largely precluded this possibility. The spin-lock
mechanism was therefore only used on small data structures, which would
only be locked for a few hundred JiS. For larger data structures, two al­
ternative mechanisms were provided, the Kernel Semaphore and the Policy
Module Semaphore.

In the Kernel Semaphore mechanism the P and V operations were im­
plemented using calIs to the Hydra Kernel. If a process became blocked
on a Poperation, because some other process was operating on the rele­
vant data structure, the blocked process was swapped out of the processor
which was then re-scheduled to run a different process. The blocked pro­
cess was placed on a blocked queue associated with the semaphore and was
swapped back in, possibly to a different processor, when its turn came. To
ensure a fast restart, pages belonging to the blocked process were retained
in primary memory. However, the time taken in blocking and unblocking
still amounted to several JiS, two orders of magnitude longer than the time
taken by a spin-lock.

The Policy Module Semaphore was intended for user programs and was
implemented by calls to a Policy Module. The principal difference between
the Policy Module Semaphore and Kernel Semaphore was that blocked pro­
cesses in the former could have their pages swapped out to secondary (disc)
memory. This could delay arestart by several hundreds of JiS of course, so
to assist in maintaining performance and to avoid unnecessary swapping,
no pages were swapped until aperiod of a few hundred JiS had elapsed after
blocking.

www.manaraa.com

Shared-memory Multiprocessors 127

The C.mmp machine was a pioneering project, with features such as the
symmetrical nature of the architecture surviving in to present day multi­
processors. However, problems such as the costly interconnection structure,
and the inefficient implementation of process synchronisation primitives,
were well-Iearned by the designers of subsequent shared-memory multipro­
cessors.

1.4 The BBN Butterfly

Our primary reason for examining this particular machine is that while
many large-scale shared-memory architectures have been proposed, the But­
terfly is currently the only such machine of its size, which is commercially
available. We shall see that, as with all practical systems, the Butterfly
achieves good performance within the range of sizes for which it is engi­
neered but that venturing above this range with the same architecture will
not necessarily produce the same results.

The origins of the Butterfly can be traced back to an earlier BBN sys­
tem called Pluribus (see section 7.1.2), a multiple-bus parallel processor
designed for high-reliability message processing on ARPANET. Subsequent
research, into the design of a successor to Pluribus, began around 1975
with extensive support from the V.S. Defense Advanced Research Projects
Agency (DARPA). Although the machine that emerged was originally in­
tended to be used for a mixture of military and government applications,
the commercial value of the Butterfly is now also being exploited. When the
Butterfly was launched commercially in 1985 four machines out of an ex­
pected 10 had already been delivered to DARPA, and one of these machines
was a 128-processor version.

7.4.1 Overview of the Butterfly

The Butterfly parallel processor [CGS*85,RT86] is a tightly-coupled shared­
memory machine with homogeneous processing elements. The machine's
primary memory is distributed amongst the processors, with each pro­
cessor having either 1 or 4 Mbytes of dynamic memory. The processor­
memory pairs, known as processing nodes, are interconnected by the But­
terfly Switch, details of which are presented later in this section. The block
structure of the Butterfly architecture is illustrated in figure 7.8. Perhaps
the most significant feature of the Butterfly is that it is purposefully en­
gineered to be cost-effective over a wide range of configurations, up to a
maximum of 256 processing nodes. The Input and Output are distributed
amongst the processing nodes, with up to four 1/0 device adapters per
node. These may be either IEEE 796 Multibus adapters or a proprietary
adapter containing eight serial ports (4 X RS-232 and 4 x RS-449).

www.manaraa.com

128 Architecture oE High Performance Computers - Volume II

Processoro
5
I

Memoryo

· · ·
Processor n

5

Memory n
I

51 = 5witch Interface

n<256

5ingle-sided
Multi-stage

Butterfly
5witch

'-----

Figure 7.8 Architecture 01 the BBN Butterfly

Each Butterfly card frame holds up to 16 processing nodes, and four
card frames make up a rack. The largest eonfiguration would therefore
oce~py eight racks. In order to maximise the system reliability for such large
numbers of processing nodes eaeh node has a private 'on-board' switched­
mode power supply.

7.4.2 Butterfly processing nodes

At the heart of each processing node in the Butterfly system is a Motorola
M68000 family mieroproeessor. This may be either a M68000, operating
at 8 MHz, or alternatively if floating-point performance is important, an
M86020 processor with memory management and floating-point coproces­
sor, operating at 16 MHz.

In section 7.2 we saw how the interprocessor communication functions
required in the Sequent Balance were implemented with a custom coproces­
sor, and in the Butterfly a similar approach is used. Each processing node
has a 16-bit user-mieroprogrammable bit-slice control processor, based on
the AMD 2901, known as the Processor Node Controller (PNC). The PNC
intercepts all memory references from the microprocessor and aceesses either
loeal or non-Iocal memory on its behalf. The PNC also handles all incom­
ing memory requests from non-Iocal proeessors, arriving via the Butterfly
Switch. With the aid of the memory management hardware the PNC trans­
lates virtual addresses into physical addresses, thus permitting the software

www.manaraa.com

Shared-memory Multiprocessors

M680000r
M68020+Floating-point
Co-processor

Am2901-based
Processor Node Controller
(PNC)
With Memory Management

Switch Interface
I+-----t--~ Logic

IfO Interface

r----------,
: Expansion Memory :
I (3 Mbyte) I '- __________ -1

Figure 7.9 Butterfly processor node

129

to locate each segment of virtual memory anywhere in the system. This
results in the memory of all processing nodes appearing to the application
software as a single global address space.

The local memory associated with each processingnode consists of
1 Mbyte of dynamic memory, expandable to 4 Mbyte with the addition
of a 'daughter board'. Each processing node also has a bi-directional inter­
face to the Butterfly Switch, and its own private Input-Output bus. The
block-structure of a processing node is illustrated in figure 7.9.

From an architect's viewpoint the most interesting features of the But­
terfly machine are the Butterfly Switch and the PNC, as together these two
components define the time penalty associated with non-Iocal memory ac­
cesses, and hence the intrinsic machine latency. However, because there is
a time differential between local and non-Iocal memory references, and be­
cause messages passing through the switch can interfere with one another,
the way in which data are distributed throughout the shared address space
also plays an important role in determining the machine's overall perfor­
mance.

www.manaraa.com

130 Architecture of High Performance Computers - Volume II

7.4.3 The Butterfly switch

The Butterfly switch provides a mechanism for passing messages between
the Node Controllers of different processing elements. These messages nor­
mally take the form of memory cycle requests and acknowledgements, and
since the assembly and dissassembly of message packets is performed by
the PNC, the microprocessors perceive transparent access to both local and
non-Iocal memory. The PNCs are also capable of performing block transfer
operations to facilitate the movement of blocks of memory from the local
memory of one processing node to another.

The 'black box' specification of the Butterfly switch is a relatively sim­
ple one. As far as the processing no des are concerned, it consists of an
equal number of input and output ports, which need not be apower of two,
although normally they would be. The ports are uniquely labelIed and,
to enable routing to be performed 'on the fly' as messages pass through
the switch, each message incorporates a header containing the label of its
destination port. The insertion of messages into the switch from different
sources occurs asynchronously, and the time taken for a message to propa­
gate from its source to its destination depends on the number of inputs to
the switch and the loading on the switch du ring routing. The asynchronous
nature of the M68000 bus enables variable round-trip delays to be hidden
from the processor, although they do have an effect on system performance
as we shall see shortly.

The network messages, containing non-Iocal memory addresses, a data
field and so me control bits, are approximately 80-bits long and, to keep
the complexity (measured here in terms of inter-stage wiring) of the switch
no des within manageable limits, the switch nodes serialise the packets into
8-bit chunks. These 8-bit chunks are piped through the switch at a rate of
one chunk every 100 ns, resulting in a minimum switch latency of approxi­
mately 10 cycles per packet.

Switch topology

The Butterfly switch is a multi-stage network which uses a variant of the
shuffie permutation (see section 3.3.3) to connect 4-input and 4-output ex­
change boxes. These exchange boxes are effectively 4 X 4 cross-bar switches,
and to illustrate this a Butterfly switch with 16 ports is depicted in fig­
ure 7.10.

Routing within a single node is performed by labelling the four output
ports uniquely in the range {o ... 3}, then assigning a route from each input
port to the output port selected by the two least significant digits of the des­
tination label associated with each incoming packet, as shown in figure 7.10.
As the destination label for a packet passes through each switching node

www.manaraa.com

Shared-memory Multiprocessors 131

Inputs Outputs

0 0
4 4
8 8

12 12

00 1
5 01 5
9 10 9

13 11 13

2 2

6 6
10 10
14 14

3 3
7 7

11 11
15 15

Figure 7.10 16-Port Butterfly switch

the two least signinficant digits are 'removed', thus exposing the next two
digits to the routing function in the subsequent stage of the network. If at
any time during the setting up of a route through the switch, a routing con­
flict occurs, one of the conflicting messages will proceed unaffected whereas
the other must retrace its path out of the switch, to be re-transmitted af­
ter a short delay. The importance of clearing down a partially routed, but
blocked, link from the point in the network where the conflict occurred back
to the source node, will become apparent when we discuss the performance
of the switch.

The routing function

The actual routing function used by the Butterfly switch can be expressed
formally by defining it as a composite sequence of permutations, Bni , which
is applied to an input packet of the following form. Let the input packet
consist of a he ader containing an n-bit destination label D = {dn , ... ,dl }.

Let us also assurne that during the routing of the packet through the switch
the packet he ader is located at the kth stage, with an intermediate label
given by P = {Pn, ... ,Pl}. The switch network is characterised in terms of i,
the radix of the switch nodes. The radix determines how many channels are

www.manaraa.com

132 Architecture of High Performance Computers - Volume II

switched within a single switch node, and this is given by c = 2 i. Hence, the
total number of active stages in the network is given by s = log2i N = '1
for an N-port Butterfly switch. We can hence define Eni , the exchange
permutation performed in each switching node on a packet with destination
label D when at an intermediate label P, to be

Eni ({P, D)) = {{Pn,Pn-l, ... ,PHI, di , di - l , ... , d l },

{di, di-l, ... , d l , dn, dn-l, ... , di+1})
(7.1)

and the shufHe permutation applied to the connections from stage k to stage
k + 1 is then

(7.2)

where (J;;X(P) is the xth inverse sub-shufHe applied to P (see section 3.2).
This permutation is defined formally, as

Informally, this defines a right-circular rotation of the binary representation
of the least significant ik bits of P, by i places. Effectively, E~ and S~ k

map from (P, D) to (Pi, D'), where P and pi are the entry and exit labels
of the packet through the kth stage in the network, and D and D' are the
target (destination) labels before and after the routing takes place at the
kth stage in the network.

The Butterfly switch as a whole can now be defined as the composition
of Eni and Sn:k over n/i stages, thus

(7.3)

This permutation is illustrated in figure 7.10, for 16 processing nodes and
i = 2 (4 X 4 switch nodes). Note, there is no shufHe permutation at the
output of the switch, since the last shuffie permutation is Si j' which is n,n t

equal to I, the identity permutation.
The logic of the Butterfly permutation indicates how a route through

the switch is set up, but does not give any indication of how weIl such a
network performs under differing conditions of loading. To ascertain this
we must explore the available bandwidth and the prob ability with which
packets collide during routing through the switch.

7.4.4 Performance

Assessing th~ performance of a general purpose parallel computer, such as
the Butterfly, is an important exercise if lessons are to be learned, particu­
larly in the area of scalability. A realistic assessment, as we saw in earlier

www.manaraa.com

Shared-memory Multiprocessors

N-node
Butterfly
Switch
(Latency = t,w)

Figure 7.11 Processor memory da ta pathways in the Butterfly

133

chapters, takes account of both the architecture and the applications for
which the architecture is intended. By definition a general purpose parallel
computer has no single dass of applications for wh ich it is best suited, and
therefore we must model not only the architecture, but also the character­
istics of an arbitrary application on that architecture.

It is possible to model the behaviour of the Butterfly by characterising
its structure in the form shown in figure 7.11. In this model there are N pro­
cessing nodes, each of which executes instructions at a rate of I instructions
per second. Memory requests originating from each processor are routed
through that processor's local PNC, and are subsequently serviced either by
the local memory associated with that processor, or by one of the non-Iocal
memories via the Butterfly switch. It is possible to model the performance
of a Butterfly node in terms of the average time required to execute each
instruction, and a significant factor he re is the average time each instruc­
tion spends interacting with memory. This is determined by the average
number of memory requests per instruction multiplied by the average la­
tency associated with each memory operation. An important characteristic
of the Butterfly is therefore how weH the Butterfly switch can transport the
memory requests and associated acknowledgements between the PNCs of
different nodes.

The latency of local memory requests can be modelled, quite simply, in
terms of the basic local memory access time (ta) and a multiplying factor
(A) which represents the effect of externalloading on that memory module.
Hence

www.manaraa.com

134 Architecture of High Performance Computers - Volume II

PNC Setup
(Frame Assembly) Packet Transit Packet Transit

PNC Finish
(Frame Disassembly)

~----------------------- t"'------------------------~~~I

Figure 7.12 Activity-time graph for non-Iocal accesses

The latency of non-Iocal requests is a slightly more complex function since
it depends critically on the transit time of the memory request and acknow­
ledge packets through the Butterfly switch. This is illustrated in figure 7.12
which shows the component times involved in non-Iocal operations. The set­
up time of the PNC consists of the time required to assemble a packet prior
to insertion into the network, and this is essentially constant. However, the
packet transit time depends on many factors, and therefore deserves a more
thorough investigation.

The transit time of a single packet through the Butterfly switch consists
of two parts. Firstly, there is the time it takes to propagate a packet through
the switch mechanisms, and secondly, there is the possible time penalty
associated with those packets which collide and require re-transmission.

An s-stage Butterfly switch, with a dock period of tcp is capable of
propagating an m-bit message in b-bit chunks, with a total delay of Tp

seconds, such that

Tp = tcp (s + f71- 1) seconds

Essentially, the s switch stages operate as a pipeline of length s, switching
eight bits in each dock period. In fact, the processing node controllers are
also capable of performing block transfers, and these reduce the effect of s

on the propagation time.
The time penalty associated with routing conflicts depends on the sum

of the following time components.

1. The time to detect that a collision has occurred.

2. The time to dear down the switch setting for the blocked packet.

3. The delay inserted by the PNC before the packet is re-transmitted.

Collisions in a multi-stage routing network, such as the Butterfly, are more
likely to occur in the early stages than in the later stages, and hence the

www.manaraa.com

Shared-memory Multiprocessors

Laading at
the Inputs
ta Stage i
=L,(/1

I

I
I

0::[J:

::[J:

=CJ=

:N-l=CJ=
I
I
I Stage i -----l

Loading at
Outputs fram
Stage i = Lo (/1

=L,(i+l)

Figure 7.19 One stage in a multi-stage network

135

average delay between the packet header entering the switch and a routing
conflict occurring (for those transfers which result in a conflict) will be less
than stcp /2. The time taken to clear down the switch setting will be equal
to the time taken to detect the collision, since a 'clear down' signal must
retrace the path taken during the set-up phase. We may also assume a
certain delay before a blocked packet is re-transmitted, let us call this 8,
which is inserted by the PNC to ensure a reasonable probability that the
availability of the required route will have altered in the time between the
conflict occurring and the packet being re-transmitted.

The effect that collisions have on the average non-Iocal access time de­
pends on the relative frequency with which such collisions actually occur,
and we expect this to be a function of both the connectivity of the switch
(that is, its configuration) and the connectivity of the application (in other
words, the switch loading). Consider a single stage of a multi-stage net­
work, as shown in figure 7.13, composed of simple 2 x 2 exchange boxes (see
section 3.2). If there are x incoming messages (active inputs) distributed
randomly over the N input ports to the switch, then the average input
loading on each port of the switch, LI, is

However, in a multi-stage network the input loading at stage i + 1 will be
equal to the output loading at stage i, and we can hence define the loading

www.manaraa.com

136 Architecture of High Performance Computers - Volume II

Table 7.1 Survival rate at each stage in aMIN with 2 X 2 nodes

0 1.000 4 .450 8 .300
1 .750 5 .399 9 .278
2 .609 6 .359 10 .259
3 .517 7 .327 11 .242

at each stage of the network as

LI(i + 1) = La(i)

We can complete this definition of loading, as we know that the output
loading at stage i is equal to the input loading at stage i minus the probable
number of packets blocked at stage i.

Now, the probability of losing a packet due to a blockage in a 2 x 2
switch node is equal to the probability of both input ports being actively
loaded, multiplied by the probability of both incoming packets requiring
the same intermediate destination label. This is equal to

Hence, the probability of a single output port losing a packet will be one
half of this, and we can write

or alternatively,

(.) L (') LI (i) 2
LI ~ + 1 = I t - -4-

Using this equation we can calculate the survival rate of a given input load­
ing through any number of stages, and this is shown in table 7.1 for an input
loading of unity. We can see from this table that if a 256-node Butterfly
system were constructed using 2 X 2 exchange nodes, and then operated
at 100 per cent loading, only 30 per cent of all memory re fe ren ces would
be routed successfully to their destination labels at each attempt. Clearly,
this is an unacceptably poor state of affairs, and in this simple model the
effects of retries and so called 'hot spots', or frequently referenced mem­
ory modules [PN85], are not even taken into account. As a result of the
poor performance of such a routing network two modifications to this basic
design are used in the production version of the Butterfly. These involved
halving the number of stages required for a given value of N, and reducing
the maximum input loading on each port of the Butterfly switch.

www.manaraa.com

Shared-memory MuItiprocessors 137

We noted earlier that the number of stages in a Butterfly switch is
10gc(N), where c is equal to the number of inputs to each switch node.
Thus, by doubling the number of inputs to each switch node, we can halve
the number of stages required in the network as a whole. Now, instead
of implementing 2 X 2 switch nodes, we implement c X c switch nodes,
these being effectively c X c cross-bar switches. We can continue this up to
the point where each node switches N inputs, at which point the network
becomes a fuH cross-bar switch. This process of node enlargement also
reduces the total number of switch nodes in the network from N /210g2(N)
to N/clogc(N). As evidenced by table 7.1, any reduction in the number of
stages traversed by a set of messages will yield an improvement in message
survival rate, and this is the principle upon which the technique of enlarging
the switch no des is based.

A reduction in the number of stages in the switch network is clearly a
good thing; however, by changing the number of connections to and from
each switch node the prob ability of collisions within each node will also
change. The throughput characteristics of cross-bar switches of arbitrary
dimensions have been analysed by Mudge and Makrucki [MM82], who have
shown that for a uniform distribution of output port addresses, and a prob­
ability, r, of each input in ac X c cross-bar switch being active, the expected
bandwidth of the switch is BWc(r).

BWc(r) = c [1 - (1 -D C] (7.4)

Hence, the survival rate of requests passing through a c X c cross-bar switch
is Sc(r).

(7.5)

Interestingly, as the size of a cross-bar switch grows, the survival rate tends
towards an asymptotic value Soo (r).

(7.6)

So, for a fully loaded cross-bar switch with 5 :::; c :::; 00, the survival rate
ranges between 67.2 per cent and 63.2 per cent.

We can now use equation 7.5 to model the throughput of a Butterfly
switch by applying it recursively over s = 10gc(N) stages, using the following
rule for evaluating the loading (ri) at stage i {O :::; i :::; s},

{ Sc(ri) i:f:O
ri+l = Sc(l) i = 0 (7.7)

where l is the input loading to the whole network. Recall that the BBN
Butterfly switch is constructed from switch no des with a value of c = 4, and

www.manaraa.com

138 Architecture of High Performance Computers - Volume II

Table 7.2 Packet survival Vf'. sw~'tching radix

i c 5 0 (1)
1 2 .7500
2 4 .6836
3 8 .6564
4 16 .6439

L,U)

1.00

0.75

0.50

i i I i I I i I I" i
o 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 7.14 5urvivability 0/ packets traversing a Butterfly switch (c
4,[= 1.0)

hence in order to evaluate the effectiveness of using c > 2 we may compare
5(0)2)(1) with 52(1). This has been done for values of c which are powers of
two, and in the range {2 ::; c::; 16}, and the results are shown in table 7.2.

Progressing from switch no des with c inputs to c + 1 inputs per switch
node divides the number of stages in the network by half, and this more
than makes up for the slight decrease in survivability of packets traversing
4 X 4 switch nodes in comparison with 2 X 2 switch nodes, and this technique
does therefore improve throughput.

Using equations 7.5 and 7.7 we can produce a survivability curve for a
Butterfly switch constructed from cX c switch nodes, given any value for /,
and such a curve is illustrated in figure 7.14 for 1= 1.0 and c = 4.

The second method of improving the throughput of a multi-stage in­
terconnection network, wh ich is also implemented in the Butterfly switch,
is switch de-rating. This involves operating the switch at a reduced input
loading in order to limit the losses due to routing conflicts. The input load­
ing can be reduced in one of two ways, either the switching elements can

www.manaraa.com

Shared-memory Multiprocessors

Packet Survivability

1.00 ------------------

0.75

0.50-

0.25

1.0 2.0 3.0 4.0

139

Network
Derating
Factor

Figure 7.15 Relationship between packet survivability and switch derating
factor for a 5-stage network

be engineered to operate faster than requests cah be generated from the
processing nodes, or extra links can be inserted in the network to provide
more than N links at each stage. The latter technique is also useful from a
reliability point of view, since the extra links mean there is more than one
route from each input to each output, and hence failure of any one link will
not affect the connectability of any pair of processing nodes. The Butterfly
incorporates an additional stage in the network to provide two paths from
each sour ce node to each destination node. This increases the number of
stages by one, but the de-rating of the switch reduces the average loading
by approximately one half. The effect of de-rating a multi-stage network is
shown graphically, in figure 7.15, from which it is apparent that derating
the switch pro duces a marked increase in survivability.

Manufacturer's performance measurements of the Butterfly, running
Matrix Multiplication and Gaussian Elimination algorithms, indicate that
for systems containing 128 processing nodes the overhead due to switch
contention is a very small part of the total execution time (approximately
2 per cent) [CGS*85]. The same benchmarks indicate that the overhead
incurred due to switch propagation time is also quite low (approximately 3
per cent). It must be stated that both of these algorithms contain a high
degree of uniformity, and that block transfers of the rows and columns of the
matrices involved could influence the performance of the switch. Further­
more, the loading on the switch during these operations must have been weIl
within the peak capability of the switch, since the occurrence of collisions
was remarkably low.

www.manaraa.com

140 Architecture of High Performance Computers - Volume 11

It is clear that the performance of the switch will affect the performance
of the machine as a whole, and that the rate of non-Iocal requests is cen­
tral to this theme. However, through a combination of optimised switch
architecture and careful engineering it is possible to produce a multi-stage
interconnection network for connecting together relatively large numbers
of microprocessor nodes in a distributed shared memory environment, and
make it work relatively efficiently.

7.5 Sununary

Shared-memory multiprocessors are probably the most conventional form of
MIMD architecture; they do not alter the model of computation, and they
can be used simply to provide high performance multi-user systems if that
is what is required. Small-scale shared-memory systems can be built quite
easily using high performance buses, as witnessed by the availability of ma­
chines such as the Sequent Balance and the Encore Multimax/Ultramax.
Large-scale shared-memory multiprocessors can encounter significant prob­
lems related to access contention to the shared-memory modules, and sev­
eral techniques have been devised to overcome these problems.

As far as commercial systems of this kind are concerned the Butterfly
machine is the currently largest. However, several other machines using this
type of architecture have been proposed, and are currently being developed.
These include the IBM RP3 project [PBG*85,PN85], and the associated
NYU Ultracomputer project [GGK*83].

The extension of the shared-memory model to very large systems is, at
the time of writing, still an active research area with the problem of access
contention und er conditions of heavy switch loading yet to be resolved.

www.manaraa.com

8 Message-passing Multiprocessors

The connection of a number of parallel processors by means of a common
shared store suffers from two fundamental problems. Firstly there is the
difficulty of providing adequate memory bandwidth to support large num­
bers of processors, all of which in principle could be contending for the
same memory module. Secondly, where processors attempt to coordinate
their activities through synchronisation variables held in common memory,
the inefficiencies due to processors idling in a tight loop, and the satura­
tion of vulnerable links in the processor-memory network can lead to poor
performance.

Sophisticated solutions to these problems have been proposed, for ex­
ample the fetch & add operators in the NYU Ultracomputer [GGK*83], and
combining switches in the IBM RP3 design [PN85]. However, these tech­
niques inevitably introduce additional hardware complication and expense,
and their cost effectiveness is yet to be established.

A radically different approach to MIMD processing must be sought if
these fundamental problems are to be avoided, and perhaps the most natural
alternative is simply to design systems in which processors do not share vari­
ables. An immediate consequence of enforcing such a rule is that there is no
requirement for generally accessible shared memory, and the attendant dif­
ficulties are therefore avoided. However, if the facility for sharing variables
is removed, some other mechanism for passing values between processes
must be provided. The key to this alternative communication mechanism
is the message-passing paradigm, used for many years in multiprocessing
operating systems but only recently applied to parallel architectures.

In a message-passing architecture processors communicate by sending
and receiving messages. The processors in such systems normally operate
asynchronously, and so the transfer of information requires the sending
and receiving processes to synchronise. As a rule, for two processes to
communicate one must perform a Send_Message operation and the other
must perform a Receive_Message operation. If the actual times at which
these operations are initiated are ts and tR respectively then, if ts < tn
the sending process must wait for the receiving process to catch up, and
if ts > tR the receiving process must wait. We refer to Its - tRI as the
wait-time associated with a communication event, and its value is clearly
dependent on the temporal behaviour of the application and the speed with
which messages are transfer red fra m process to process.

141

www.manaraa.com

142 Architecture of High Performance Computers - Volume II

In a shared memory multiprocessor the link between two cooperating
processes is effectively the address of the shared variable(s) through which
they communicate. In a message-passing system the link between coop­
erating processes exists in the form of a naming convention within the
Send_Message and Receive_Message operations, and here two alternatives
are possible. An obvious naming convention would be for each message­
passing operation to name explicitly the partner process (and/or the pro­
cessor on which it resides) for that operation. For example, assuming that
processes Pl and P2 exist, a message could be sent from Pl to P2 by the
execution of the following code.

Process.l Process.2

Send(P2.message) R~ceive(Pl.message)

An alternative naming convention can be implemented by directing mes­
sages through named channels. In this case, for two processes to communi­
cate, they must both quote the same channel identifier in their respective
message-passing operations as folIows.

Process.l Process.2

Send(chan_X. message) Receive(chan_X.message)

When contemplating message-passing systems from a theoretical viewpoint
it is usually sufficient to consider processes, channels and communication
operations as existing without reference to any specific implementation re­
strictions. In practice however, this is an over-simplification. The general
structure of a message-passing multiprocessor system is depicted in fig­
ure 8.1, from which it can be seen that there are two primary components;
the processing elements (PEs) and the ~essage transfer system (MTS).

Consider a system in which there are n processors, and m application
processes. There are likely to be many circumstances und er which m > n,
and so we must expect each processor to provide a large (but necessarily
finite) number of virtual processors to which these processes can be mapped
directly. By multiprogramming a number ofvirtual processors on each phys­
ical processor the wait-time experienced by each virtual processor, during
inter-process communication, can be overlapped with other useful process­
ing on that physical processor. Whilst these techniques have been used
in single-processor systems for many years, it is important to address the
implications of multiprogramming for the message transfer system. For ex­
ample, with both naming strategies mentioned previously it is possible for

www.manaraa.com

Message-passing Multiprocessors 143

Processing Element 1 Processing Element

Processor Local
Memory ...

Communication
Logic

l 1 l 1
Message Transfer System (MTS)

Figure 8.1 A generic message-passing multiprocessor architecture

communication events to occur between processes (effectively virtual pro­
cessors) which reside on the same or different physical processors, and the
MTS protocol must deal with both of these situations.

8.1 Design issues for message-passing architectures

Observing that the processing elements in a message-passing multiproces­
sor are essentially equivalent, in function and form, to a conventional uni­
processor, it is easy to see why the majority of innovation and design effort
is normally expended on the MTS and the inter-process communication
protocols. As we saw in chapter 6 the granular efficiency of an MIMD sys­
tem depends on the ratio of computation time per communication eveni
to the communication overhead per communication event. Traditionally,
the task of preparing and sending an inter-process message has been no­
toriously slow, leading to excessive communication overheads. However,
this state of affairs need not, and indeed has not, persisted. The primary
reason why message-passsing is considered slow and expensive is that the
processing elements in early message-passing systems were implemented
using conventional processors. A simple examination of the programming
model of these processors indicates that they embody none of the concepts
of message-passing and so these must be simulated in software.

If we refer back to chapter 6 and relate the simulation of a message­
passing processor to the fundamental parameters of granular efficiency, it
be comes apparent that the simulation of communication leads to large val­
ues for d and I (the proceed/wait decision time and intrinsic communication

www.manaraa.com

144 Architecture of High Performance Computers - Volume II

latency respectively). For example, in the MUSS operating system [FT79J,
the sending and reception of messages is supported via operating system
calls (between named processes). Typical operating system implementa­
tions of Send_Message and Receive_Message execute several hundreds of
instructions per communication event. Consequently, one of the most im­
portant design issues for high performance message-passing multiprocessor
systems is the minimisation of software intervention during process commu­
nication.

At the hardware level there are several design issues which affect the
performance of inter-process communication. Of particular significance is
the connectivity of the physical processor inter-connection network. There
are two choicesj either a fully-connected or a partially-connected network of
processors. If the network is only partially connected then messages travel­
ling between arbitrary pairs of processing elements may have to make several
passes through the MTS, being forwarded each time by an intermediate pro­
cessor. This store-and-forward technique is common in local and wide-area
networks where the exigencies of cost dictate the use of sparse communica­
tion networks. However, store-and-forward may steal CPU cycles (as weIl as
memory cycles) from each intermediary, effectively decreasing the efficiency
of the processors and increasing the net cost of each message. This is taken
to the extreme in transputer-based systems (see section 8.2) whereby the
programmer must implement the store-and-forward mechanism explicitly.

Modifying conventional programming languages to exploit shared mem­
ory in MIMD systems requires very little in the way of language enhance­
ments, and those which are required are normally quite straightforward to
implement. The primary reason for this is that there remains a global state
to which all processors have access, and which adesignated processor can
initialise and interrogate throughout program execution. Hence, examining
the state of a parallel application code is conceptually identical to examin­

'ing the state of a sequential application code. In a message-passing system
there is, by definition, a distributed state which is only accessible via the
MTS. This can complicate the diagnosis of errors, and even the detection
of errors.

The programming language (and perhaps also the programmer) must
also be responsible for at least an initial placement of processes on to vir­
tual processors. A poor placement is typically one in which processes which
communicate a significant volume of information are placed at so me dis­
tance. The best placement will minimise the total distance travelled by all
bits of communicated information. A poor placement will lead to reduced
performance over the best-case placement, and for that reason should be
avoided.

The placement problem can be formalised by identifying the distance

www.manaraa.com

Message-passing Multiprocessors 145

between pairs of communicating processes. Let the set of an physical
processors P = {PI ... Pn}, and let the set of an virtual processors (pro­
cesses) 1.1 = {VI ... Vm }. Communication between two processes running
on a pair of physical processors (i, j) takes a time which is proportional
to their physical separation di,i. The actual placement of processes on
to processors can be defined as a mapping place: process - processor,
which is a many-to-one mapping. Hence, the physical separation of two
processes (i,j) is given by dplace(i),place(j). Each communication event can
be defined as a tripIe (i,j, w) where i and j are the source and destination
processes and w is the quantity of information associated with that event.
If the set of an communication events occurring during program execution
is C = {(i I, jl, wt), ... , (i I, j/, WI)}, then the total cost of an inter-process
communication can be defined as T

T = L W.dplace(i),place(j)
(i,i,w)EC

The problem of placement is hence a problem of minimising T, often a
task which cannot be performed prior to program execution. The minimi­
sation of T requires explicit knowledge of all process interactions, including
which processes communicate and how much information is transferred dur­
ing each event. Since such information is not normally available in practice,
a less than optimal placement may have to be accepted. Alternatively, a
dynamic placement may be used whereby the placement alters during pro­
gram execution through the migration of processes. Dynamic schemes are
only effective when there is a significant amount of locality in the pattern of
communication since it relies on the assumption that if a pair of processes
communicated heavily during the interval T - t to T then they are likely to
do so again in the inter val T to T + t. Migration is typically initiated when
the cumulative cost of communication between a pair of processes exceeds
a certain threshold. The choice of which process should migrate is often a
difficult one, since communication with other processes mayaIso be affected
by a change of placement.

As we saw in chapter 6 the latency of communication is an important
factor in determining the actual speedup achievable for a given degree of ap­
plication parallelism in a shared-memory architecturej in a message-passing
system the same principle holds. In effect the only difference from a perfor­
mance point of view is that in the message-passing style of architecture the
scheduling of processes on to processors is restricted by the often prohibitive
cost of moving processes between processors.

The remainder of this chapter describes a number of message-passing
architectures, which for reasons of taxonomy are divided into those which
communicate via fixed degree networks and those which communicate via
variable degree networks.

www.manaraa.com

146

Off-chip
Memory
Expansion

Architecture of High Performance Computers - Volume II

,-- - - - - - - - - - - - --,

I: I 111 Processor .

1 1

1 Link 0 I
I ..

I

On-chip
RAM

.. } INMOS Standard
Serial Link
(Bidirectional)

: Link 1-1 I
I ~"'-~I ---
L _____________ --l

Figure 8.2 Conceptual structure 0/ the transputer

8.2 Transputer-based systems

A description of the internal architecture of the transputer is difficult to
justify without reference to occam, the primary language for which it is
designed, since the architecture of the transputer is optimised specifically
for executing occam processes. The language occam [INM84,Ros84,BS89]
has been designed specifically with inter-process communication and explicit
process parallelism in mind, and this should be borne in mind when read­
ing the following description of the transputer architecture. Section 9.1.2
presents an overview of the occam language, and in section 9.2.2 an exam­
pIe occam program is developed.

The transputer [Whi85] is one of several 32-bit VLSI processors that
have been specifically designed for use in concurrent message-passing sys­
tems. The conceptual structure of the transputer (see figure 8.2) contains
the three essential ingredients for a self-contained element of a message­
passing system, notably processor, local memory and communications. The
general philosophy of the transputer is one of providing a family of compat­
ible components which are able to communicate with the minimum of ex­
ternallogic, irrespective of their individual internal dock rates. To this end
individual transputers communicate via point-to-point links, implemented
using an asynchronous bit-serial protocol. Each transputer has a fixed
number of such bi-directional links, nominally four, and hence any pro­
cessor inter-connection network of fixed degree i (i ::; 4) can be constructed
from these devices. In transputer-based multiprocessors the serial commu­
nication links and their inter-connection topology together constitute the
message transfer system.

The architecture of the transputer is defined by reference to the pro-

www.manaraa.com

Message-passing Multiprocessors 147

gramming language occam [INM84] (see section 9.1.2). Occam possesses
the necessary language attributes for expressing algorithms in a manner
suitable for distributed parallel processing on networks of transputers. It
enables the whole computation to be expressed as a static coHection of pro­
cesses which operate concurrently and communicate through named chan­
nels. The placement of occam processes on to transputer processors is
the explicit responsibility of the occam program, and processes would not
normally be expected to migrate. The static structure of occam processes
permits the transputer hardware to remain simple and uncomplicated. This
means, for example, that the domain of each process is known at compile
time and consequently hardware for segment based memory protection is
not required.

In the following sections we examine the implementation of the trans­
puter architecture and the influence which occam and concurrency have
had on the design of the programming model and instruction set of the
transputer. We then discuss the ways in which large transputer-based mul­
tiprocessors can be constructed, and examine an example system.

8.2.1 Architecture of the T414

Overview

The T414 is a 32-bit microprocessor implement at ion of the general trans­
puter structure outlined in figure 8.2. It has 2 Kbytes of on-chip RAM
and four standard INMOS full duplex, serial links. The block structure of
the T414 can be seen from figure 8.3. The on-chip memory consists of 512
32-bit words of 50 ns cyde-time static RAM. The fixed-point processor is
capable of executing code at a peak rate of one 8-bit transputer instruction
every 100 ns, when isssuing instructions held in the on-chip RAM. The ex­
ternal 32-bit memory interface is capable of addressing up to 4 Gbytes and
has a peak data transfer rate of 25 Mbytes per second, equivalent to one
32-bit word every three processor cydes. No external memory interfacing
logic is required with the T414 since this is contained on-chip in the form
of a programmable set of memory control signals. The T414 is thus able to
provide refresh signals for a variety of dynamic memory devices, as weH as
signals suitable for use as row and column address strobes.

Each of the four links provides two occam channels, one in each direc­
tion, operating at frequency of 5, 10 or 20 Mbits/sec1. The data transfer
protocol is word length independent enabling the T414 to interface to other
devices in the transputer family which may have differing word lengths.
The links operate autonomously, enabling the transmission and reception
of messages to be overlapped with instruction processing. This is an im-

IThe standard link frequency is twice the input dock, or 10 Mbits/sec.

www.manaraa.com

148 Architecture of High Performance Computers - Volume II

r-----------
I
I

Configuration /,-_.L-.I'

Controls
System
Services

32-bit Fixed-point
Processor
100ns cycle

2 Kbytes
Static RAM
50ns cycle

Link Interface 0 }
20 Mbit/s
Serial
Communications
(each way)

32-bit
Multiplexed
Data/Address ---..r--,-,/
Bus

External
Memory
Interface

Timers

Link Interface 1

Link Interface 2

Link Interface 3

I

I I~II External Event Logic ~

I 1 ________________________ -.J

Figure 8.9 Block structure 0/ the T4LI transputer

portant feature of the transputer , for it enables the performance-degrading
effects of message-passing latency to be transparent to the processor. Of
course this can only be achieved when there are sufficient parallel processes.
The T414 also contains a timer which permits occam programs to perform
real-time functions. For example, the current process can be delayed until
the timer reaches a certain value.

The T414 contains approximately 150,000 transistors fabricated in a
1.5 micron twin-tub CMOS process, and dissipates less than 500 mW. The
device accepts a dock signal of 5 MHz, from wh ich it generates its own
internal processor dock.

Instruction set architecture

Instruction set architecture (ISA) encompasses both the programming model
(or user's view) and the architectural constructs required to support that
model in hardware. The design of an instruction set architecture intended
for use in concurrent systems will be influenced heavily by the need to sup­
port concurrency and communication, so one must first consider the major
influences which were brought to bear during the design of the transputer.

www.manaraa.com

Message-passing Multiprocessors 149

Of the many influences on the design of the ISA for the transputer, the
following five are of particular importance.

1. There should be hardware support for concurrency, and in particular
for inter-process communication and process management.

2. Object code should be word length independent to permit the inte­
gration of a variety of devices within the transputer family.

3. Source code should run unchanged between transputer networks of
differing sizes.

4. Occam is the lowest semantic level that any programmer should need
to see, and hence the instruction set can be optimised to give preju­
dicial support to occam.

5. Occam processes and procedures are declared statically, and therefore
process workspaces can be allocated statically and do not need run­
time memory protection.

Programming model

The programming model of the transputer is extremely simple, in keeping
with the occam philosophy, and effectively implements a stack architecture.
The entire state of the currently active process consists of just six machine
registers, plus the code and workspace for that process. This is illustrated
in figure 8.4.

Due to the non-recursive nature of occam the depth of stack required
to evaluate an arbitrary expression can be computed at compile-time, and
temporary variable space within the workspace can be allocated accordingly.
The three registers Areg, Breg and Creg together constitute the top three
locations of an evaluation stack. The Wptr register is used as a base from
which alllocal variables belonging to a process can be addressed. The Iptr
register addresses the next sequential instruction to be executed by the
current process. The Oreg register is used to build word length values from
word length independent instructions, the precise functioning of wh ich is
discussed shortly.

When the current occam process is not in the process of evaluating an
expression only the Wptr and Iptr registers contain volatile process context.
This simple arrangement of internal architecture means that scheduling and
de-scheduling processes at such positions can be extremely fast.

Instruction format

The instruction format of the transputer is optimised for minimum static
and dynamic code space requirements. It comprises a single 8-bit instruction

www.manaraa.com

150

top three {
locations
ofthe
evaluation
stack

Architecture of High Performance Computers - Volume II

Machine
Registers

Areg

Breg

Creg

ir
Oreg

Wptr

Iptr

.-~
•

Local
Variables

· · ·
process

) workspace

~

Program
Space

End of
process

·
·

Next
instruction

· ·
Start of
process

Figure 8.4 Transputer programming model

7 43 o

Function Operand

Figure 8.5 Transputer instruction format

Increasing
memory
address

format partitioned as two 4-bit fields representing function and operand, as
shown in figure 8.5. Thirteen of the sixteen functions encode the most pop­
ular transputer instructions directly. These include instructions for loading
variables on to the evaluation stack, storing values back to memory, adding
constant values to the top of stack value, and performing certain control
transfer operations. Table 8.1 outlines these direct functions.

All instructions place the contents of their 4-bit operand field in the least
significant four bits of the operand register (Oreg). Oreg is then used as the
operand for the function specified by the function field. All instructions
except pfix and nfix clear Oreg upon completion of their function. The pfix
and nfix instructions differ from the rest in that they shift Oreg four places
to the left before inserting their data. The nfix instruction additionally

www.manaraa.com

Message-passing Multiprocessors 151

Table 8.1 transputer instruction set - direct functions

function number of
code mnemonic cycles description

2 pfix 1 prefix

6 nfix 1 negative prefix

F opr operate

4 lde 1 load eonstant

7 ldl 2 load loeal

D stl 1 store loeal

1 ldlp 1 load loeal ptr

8 ade 1 add eonstant

C eqc 2 equals eonstant

0 j 3 jump

A ej 4(2} eonditional jump (untaken)

3 ldnl 2 load non-Ioeal
E stnl 2 store non-Ioeal
5 ldnlp 1 load non-Ioeal ptr

9 call 7 eall
B ajw 1 adjust workspaee

negates Oreg prior to the shift. Any literal value between MostNeg (10 ... 0)
and MostPos (01. .. 1) can be loaded in to Oreg by using a sequence of such
prefix instructions. It is primarily this aspect of the transputer instruction
set, together with the memory addressing convention, which makes the
transputer word length independent.

The opr instruction implements a call on a microcode routine identified
by the contents of Oreg. This greatly extends the range of possible instruc­
tion codes in the transputer, resulting in a total of over 100 instructions2 •

Naturally the encoding of the indirect functions is chosen so that the most
frequently used of these functions can be specified without resorting to pfix
or nfix instructions.

2From the large number of instructions, and the multi-eyde mode of exeeution, one
eould reasonably infer that the tranaputer ia not a true Rlse a.rchitecture.

www.manaraa.com

152

n-bit Machine
Pointer

Architecture of High Performance Computers - Volume II

n -1 b+1 b o

. ~I -----+--1 ---'-+---'1
Word Address Byte Pointer

b = r 1092 (~) 1 -1

Figure 8.6 Byte addressing in the transputer

Memory organisation

The 4 Gbytes of memory addressable by the transputer is organised as a
single linear address space. This memory is byte addressable through the use
of pointers, consisting of a word address concatenated with a byte pointer
(figure 8.6). Only if the number of bytes per word is apower of two can
ordinary arithmetic be performed on pointer values. The on-chip memory
and the external memory are both integrated within the same address space.

Process scheduling

In an architecture optimised for the concurrent processing of a set of pro­
cesses on an arbitrary number of processors there is a fair probability that
each processor will be required to manage more than one process. As we
saw in chapter 6, each communication event will cause at least one process
to become un-runnable, necessitating a context switch in at least one pro­
cessor. In order to maintain a balanced architecture the time taken for a
processor to swap contexts should be a small fraction of the average pro­
cess grain-time. Looked at another way, a processor with a lengthy context
switching time can only support correspondingly large grain-times for a
given granular efficiency. It is this consideration which led to the adoption
of hardware support for process management and context switching in the
transputer .

At the heart of the transputer's process management functions is a pro­
cess scheduler held in microcode. The occam processes that it manages
can be in one of two states, either active or inactive, and each state has
a number of sub-states, as shown in figure 8.7. The active processes wait­
ing to be executed are automatically linked into one of two run-queues by
the microcode of the instruction wh ich caused the suspension of process­
ing. These two queues implement two levels of priority in the scheduling

www.manaraa.com

Message-passing Multiprocessors

process

. / being executed

actlve
/ ~ on a list awaiting execution

~ ready for input (executing?)

,""",., ~ re,dy 10, "'p", ,,,"""","

waiting for a specific time to occur
(executing wait)

Figure 8.7 Transputer processing states

153

algorithm, and naturally the scheduler will choose to run a high priority
process if one is runnable. Furthermore if a high priority process becomes
runnable whilst a low priority process is executing, the low priority process
is preempted and replaced by the high priority process. Switching to a high
priority process takes slightly longer than switching from a high priority to
a low priority process, or between two low priority processes, since there is
a greater quantity of volatile context in the processor registers which must
be saved. The list structures maintained by the transputer are illustrated
in figure 8.8.

Each transputer also maintains two timers, a low priority timer which
increments every 64 JLS, and a high priority timer which increments every
1 JLs. A single time-slice lasts for 1024 high priority time periods, and
low priority processes are de-scheduled at the first suitable moment after
two time-slices have been completed. High priority processes are never
preempted. When a process is de-scheduled its Iptr is stored at location
(Wptr-l) and the process is linked to the back of the relevant run-queue.
When a process becomes halted as a result of a local channel 1/0 opera­
tion the process workspace pointer is simply placed in the word of memory
allocated to the channel, effectively linking the waiting process to a single­
element list identified implicitly by the channel address. When a matching
communication event occurs the microcode re-links the halted process to
the appropriate run-queue3 . The transputer also provides instructions to
initiate and terminate processes.

3The least significant bit of the workspace pointer is always zero, and is therefore used
to store the process priority. The priority then identifies the correct run-queue.

www.manaraa.com

154

Priority 1

PAR

P
Q

R

Machine
Registers

Priority 0

front

back

Areg

Breg

Creg

Oreg

Wptr

Architecture of High Performance Computers - Volume II

Process
Workspaces

Workspace P

Program
Memory

Code for P

Code for Q

Iptr
L-____ .j-----------~ Next Inst. for R Code for R

Figure 8.8 Process-management Zists in the transputer

Performance

The T414 transputer operates at a peak rate of one instruction executed
per processor cycle, but this asymptotic limit is unlikely to be sustained in
practice. There are several reasons for this, the most important being that
many instructions take more than one cycle, as indicated in table 8.1. Fixed­
point arithmetic instruction times are shown in table 8.2, clearly indicating
the effect on performance of the interative (microcoded) multiply and divide
instructions.

If the occam code is held in on-chip memory four instructions can be
fetched every SOns. However, if the code is stared externally then the pro­
cessor may incur additional cycles during instruction fetching. The extent
of this delay is determined by e, the number of extra cycles required far ex­
ternal memory references. If e is less than 4 then, assuming that there are
na control transfers, each extern al cycle takes less time than the execution
of the instructions fetched and there will be no additional delay. If e ~ 4
then a delay of at least (e - 3)/4 will be incurred. Contral transfers will of

www.manaraa.com

Message-passing Multiprocessors

Table 8.2 T414 fixed-point timings

operation

add
subtract
multiply
divide

processor cycle times

1
1

38

39

155

course make the average delay Ion ger than this, since so me fetches will not
result in the execution of all four instructions.

Context switching times

Perhaps one of the most impressive features of the transputer is the speed
with which it can swap processes when a communication event causes a
hold-up. When a high priority process is suspended, and there are no
further high priority processes to schedule, a low priority process can be
scheduled in just 17 processor cydes·. Interrupting a low priority process to
schedule a high priority process entails preserving the evaluation stack, and
consequently takes a maximum of 58 processor cydes. Switching between
two low priority processes only occurs at specific points in the microcode
where it is known that the evaluation stack is empty, and again this takes
only a small number of cydes.

Communication performance

Communication between two processes that are co-resident (on the same
transputer) occurs via single words of memory. The communication proto­
col involves inspecting the channel location to ascertain whether a partner
process is already waiting to communicate. This results in either the cur­
rent process being de-scheduled or the waiting process being linked to the
relevant run-queue. By implementing both the communication primitives
and the process scheduler in microcode, communication incurs a relatively
small overhearl.

Communication between two processes that reside on adjacent pro ces­
sors takes place via an INMOS seriallink, normally operating at 10 MHz.
Messages are transmitted as a sequence of data packets, each of which must
be acknowledged by an acknowledge packet. The transmission protocol is
asynchronous, enabling communicating transputers to be driven from dif­
ferent docks, and is implemented as a single wire for each occam channel.
Each link consists of a pair of channels, one in each direction, and data

4These timings assume that no memory references go off-chip.

www.manaraa.com

156 Architecture of High Performance Computers - Volume II

° 7

'-1_1----'_1----'-1_---'--_-'---_D-'~'___ta_By__'_~_e _-'----_-'--_'---0--'1 Data Packet

B Acknowledge Packet

l First Bit Transmitted

Figure 8.9 INMOS link protocol

packets for one direction are multiplexed with acknowledge packets for the
other direction on the same wire. The link protocol can be seen in figure 8.9.
Acknowledge packets are used both to signal reception of the data packets
and maintain flow control.

Transputer links are formed by cross-connecting the Linkln and Link­
Out signal of two standard links. Over physical distances of less than 300mm
aseries terminating resistor of 56 n, in conjunction with 100 n impedance
transmission lines, will maintain an adequate signal quality provided the
total line delay is less than 0.4 bit-periods (nomina11y 40 ns). Since the
link protocol is asynchronous the relative skew, caused typically by differ­
ent rising and falling edge times of the link signals (through signal buffers
for example), must be kept within a elose tolerance. This has implications
for configurable transputer arrays in which the connectivity of the links is
determined by gating the link signals according to a predefined topology.

8.2.2 The T800 floating point transputer

In 1987 INMOS produced a second generation transputer, the T800. This
is essentia11y identical to the T414 except for a larger on-chip memory and
an on-chip floating-point unit. In addition, the link communication rate of
the T800 can be set at 5, 10 or 20 Mbits/s, corresponding to peak data
transmission rates of 670, 1250 and 2350 Kbytes/s respectively, when oper­
ating concurrently in both directions. Extra instructions are also provided
to support floating point data types and to support graphics operations
directly.

The programming model of the T800 is only slightly more complex than
that of the T414, as illustrated in figure 8.10. The floating-point unit ob­
tains a11 operands from a floating-point evaluation stack consisting of three
registers AF, BF and CF. When a low priority process is interrupted in or-

www.manaraa.com

Message-passing Multiprocessors

Areg

Breg

Creg

~.
~

157

64-bit ANSI-IEEE 754-1985

t----
AF ~ BF

Priority 1
CF

L..-_______ -' Priority 0

Figure 8.10 T800 programming model

der to schedule a high priority process the contents of the floating-point
evaluation stack are preserved in a duplicate set of floating-point registers
to minimise interrupt latency.

A form of parallelism similar to that found in the CDC 6600 and the
IBM System/360 Model 91 occurs in the T800. The fixed and floating-point
units operate independently and so a limited amount of implicit overlap of
instructions within a single instruction stream can occur. Synchronisation
between the fixed and floating-point units occurs when data is moved in or
out of the floating-point unit. This permits address (integer) calculations
to proceed in parallel with floating-point value calculations.

The floating-point ALU is microcoded, and uses a three-bit cyclic multi­
plication algorithm and a two-bit cyclic division algorithm [Gos80], resulting
in the floating-point operation times shown in table 8.3. These operation
times produce benchmarked performance [INM] of 4000 K Whetstones per
second for single length arithmetic on 20 MHz devices.

The temptation to construct very large multiprocessor systems from
such high performance microprocessors as the T800 is irresistiblej a simple
calculation indicates that 1000 T800 transputers operating at 30 MHz have
a peak aggregate floating point execution rate of 2.25 GFLOPS (2.25 X 109).

However, both the T414 and the TaOO transputers can only be connected
together using network topologies of fixed degree (::; 4) so the task of linking
large numbers of transputers to form a general-purpose structure, suitable

www.manaraa.com

158 Architecture of High Performance Computers - Volume II

Table 8.9 T800 floating-point timings

operation processor cycle times
single length double length

~d 7 7
subtract
multiply
divide

7
13
19

7
21
34

for a wide variety of applications, could present problems5 .

8.2.3 Constructing multi-transputer systems

Given that the limiting factor on the possible topology of transputer net­
works is the four point-to-point links on each transputer, it is worth consid­
ering the range ofregular networks that can be constructed with degree four.
Perhaps the most obvious topology is the two-dimensional mesh which, de­
pending on the edge connections, can be extended to either a cylinder or
torus (see the DAP interconnection structure on page 55). A fully connected
torus will have problems communicating with the outside world, however,
since every available link will be in use.

If processes in non-adjacent transputers wish to communicate they must
do so via intermediate processors, which must themselves be programmed
to perform message routing since the link protocol does not support store­
and-forward directly. The number of links traversed by a message in transit
between an arbitrary pair of processors is referred to as the path length, and
in a two-dimensional mesh this is exactly 2{n1/ 2 -1) hops for an n processor
system. In general, for a k dimensional square mesh, the upper bound on
path length is k{n 1/ k - 1) hops.

It would appear at first glance that a square mesh in three dimensions
cannot be constructed from processors with just four links, as each node in
a three-dimensional (3D) mesh must have at least six links (up, down, left,
right, back and front). However, a chain of exactly two transputers has six
spare links, and can therefore be used to implement a single Ilode in a 3D
square mesh. Such a square mesh has a maximum path length of exactly
4 (~)1/3 - 2 hops.

Near-neighbour mesh topologies are very efficient for algorithms with
predominantly local communication patterns, but for algorithms with little

6 As feature sizes reduce, the amount of logic which can be put in a single chip will
increase. Subsequent generations of the transputer are likely to exploit the extra area by
incorporating more links, more memory and p08sibly more floating-point units. Note that
with a eix-link transputer a 64-processor binary k-cube architecture could be constructed
directly.

www.manaraa.com

Message-passing Multiprocessors 159

communication locality an upper bound distance between processors that is
better than O(n1/ 3) may be required. In chapter 3 (sec ti on 3.3.1) the binary
k-cube network was shown to have a maximum path length of k = pog2 n 1,
and this is less than 4 (j) 1/3 - 2 for a11 values of n for which a perfect square
3D mesh can be constructed. Clearly cubes of dimension one, two, three and
four can be constructed from transputers, but k-cubes with k > 4 cannot
be constructed directly. Instead, a network known as the cube-connected
cycle can be used to model the binary k-cube, where nodes have degree
whieh is logarithmie in n, from proeessing elements which actua11y have a
fixed degree. Each node in the k-cube is eonstructed from a ring (or eyde)
of c = k/2 transputers (c > 2). A network eontaining 22c nodes is henee
created with a maximum path length between any two nodes of 2c. Within
anode the maximum distance between any pair of transputers is c/2, and
this routing distanee may be ineurred at any node visited on a path between
an arbitrary pair of nodes. Consequently, the maximum distance between
any pair of transputers is limited to c2 hops, whieh means that the upper
bound on path length is O(log2 n). This is a graph-theoretic distance, and
is not directly related to the physical wire lengths. In practice the 300mm
limit on transputer link lengths pi aces astriet upper bound on the size of
system that can actually be eonstructed using k-cube topologies without
using reeonstituted link protocols.

Another topology which has fixed degree and logarithmic path length,
but which has wire lengths which grow more slowly, is the ternary tree. A
binary tree comprises nodes with links to two offspring nodes and a parent
node. A ternary tree is a simple extension to this whieh makes use of a11
four links on a transputer by having three offspring nodes instead of two. At
the leaves of the tree there will be a large number of uneonnected links, and
these could be used for 1/0 or to link two trees (of similar depth) together.
The maximum path length of a ternary tree is simply twiee the depth of
the tree, and is therefore 2pog3(2n + 1) - 11, whieh is O(log n).

An alternative to having one of the above fixed topologies is to have a
configurable array of transputers from whieh any of the previously deseribed
networks can be constructed. The logical structure of such an architecture
is depicted in figure 8.11 and essentially consists of n transputers and a 4n­
input to 4n-output fu11 permutation network. Assuming one could build a
fu11 permutation network for the required value of n, it would then be possi­
ble to configure an n! possible permutations of link connections. Computing
the configuration control signals has been shown to take O(nlogn) time6 ,

but since the number of permutations that is likely to be of real interest is
only a small proportion of the total number of possible permutations the

6 A parallel algorithm for calculating permutation descriptors in O(log' n) time also
exists [OT68].

www.manaraa.com

160 Architecture of High Performance Computers - Volume II

4n--4n Full Permutation Circuit Switch

Figure 8.11 Structure 0/ a configurable transputer network

power of a fuH permutation network is unlikely to be required in practice.
Several research designs for configurable transputer systems have been

produced and these include the ESPRIT Supern ode project for which the
T800 was originaHy developed, the Alvey ParSiFal project and the IBM
VICTOR machine [WBB*87]. The primary goals of these projects is to
produce transputer systems capable of being configured as one of a number
of important topologies, and particularly in the case of the VICTOR ma­
chine to be partitionable into a number of distinct networks. These are also
the goals of the Meiko Computing Surface, arecent commercial product
based on transputer technology.

8.2.4 The Meiko Computing Surface

The Meiko Computing Surface was first demonstrated in July 1985 at the
SIGRAPH Conference in San Francisco, and became commercially available
in the third quarter of 1986. It is a modular and expandable system organ­
ised as a reconfigurable array of transputer-based computing elements, 1/0
elements, and storage elements. These elements are supported by a library
of circuit boards, each optimised for a specific function.

A Computing Surface consists of a number of Modules each containing
up to 40 boards housed in two 19-inch racks. All inter-board links within a
Module are routed via the System backplane, and links between Modules are
provided by special inter-Module link boards. There is no theoreticallimit
on the number of Modules, and hence transputers, that can be contained in
a Computing Surface, although the upper bound on the inter-Module link
wire length ultimately constrains the configurations which can be extended
indefinitely. Modules contain a private power supply and use forced-air

www.manaraa.com

Message-passing Multiprocessors 161

cooling, dissipating up to 3.1 kW each. The structure of the Computing
Surface is illustrated in figure 8.12.

The system back plane in each Module supports a Supervisor bus as well
as the link connectivity, and this provides for low bandwidth communica­
tion between all computing elements in the system. It has a single Bus
Master, which is nominally a Local Host board, and is capable of resetting
and examining the internal state of all transputers, reporting errors, and
configuring the link connectivity. Application software can also use the Su­
pervisor bus as a communication pathway, and this could be particularly
useful for transmitting debugging information.

The board library

The boards in the library supported by the Computing Surface each contain
one or more computing elements, a supervisor bus interface, a link network
interface and optionally some specific 1/0 function. Each computing el­
ement consists of a single transputer (either a T414B or a T800) and a
certain amount of extern al private memory. The link network interface
is supported by custom VLSI circuit switches, although the network con­
nectivity can also be configured manually using polarised jumper cables.
Special purpose 1/0 boards, such as graphics display elements, are pro­
vided as part of the system rather than as peripherals in order to provide
an integrated programming environment for both the computing and 1/0
sections of an application.

Local Host board

The Local Host board consists of one transputer ,3Mbytes of RAM with
error detection logic, 128 Kbytes of EPROM, an IEEE-488 bus controller,
a Supervisor bus interface, two RS-232 asynchronous serial communication
ports and a link network interface. At least one Local Host is required in
each Computing Surface Module. It is responsible for monitoring hardware
and software errors, controlling the reset and post-mortem analysis of the
other transputers in its Module, and configuring the link routing switches.

Quad Computing Element board

The computing power of the Computing Surface derives from the massive
replication of transputers, each with a significant amount of private off-chip
memory. These transputers are located in groups of four on Quad Com­
puting Element (QCE) boards. Each processor on a QCE board contains
either 256 K, 1 M, 2 M or 4 Mbytes of error-checked RAM, a Supervisor
bus interface, and a link network interface. Each QCE has a maximum con­
nectivity requirement of up to sixteen INMOS links (two wires per link),

www.manaraa.com

""
l

eQ
.

~
 .. ~ !lo

.....

!I::
> ~
 .. ~ C"

>

~
 .. ~ .!
;

~

~
 ~ ~ <

:)
 ~

~

~

~

 E· ce:

. ~

.;
,
~

C"
>
~

S
C

S
I

B
us

2

x
R

S
23

2

Q
u

a
d

C

o
m

p
u

ti
n

g

D
is

pl
ay

M

as
s

St
or

e
D

a
ta

 P
o

rt

In
te

r-
M

o
d

u
le

E

le
m

e
n

ts

E
le

m
e

n
ts

E

le
m

en
ts

E

le
m

en
ts

Lo

ea
l

H
a

s
t

Li
nk

 B
oa

rd
s

'" "" ""
"" "" "

""""

1\..
"""

"" ,
,~

~"""

""""
""""

"" 0
-

~""
"",

,""
"""

~
B

oa
rd

"'''
''''

''''
''~

PE
o

+

~

PE

~
PE

~

PE

~
PE

~

M
e

m
o

ry

~

~
.~

~
f-

--
:;.

;
12

8
K

b
yt

e
 S

R
A

M
 ~

~
P

E
,

+

t:::
"

~
0.

5
M

b
yt

es

3
M

b
yt

es

~

R
A

M

IN
M

O
S

S
td

~

M
em

o
ry

~

~
8

M
b

yt
e

s

~
D

u
al

-p
o

rt
cd

~

~

3
x

0.
5

M
b

yt
e

R

A
M

R

A
M

~
k~
L

r0:

P
E

,
+

~

V
id

e
o

 R
A

M

~

~
D

ua
l

i-
C

on
ve

rt
er

s
~

~
U

A
R

T

M
e

m
o

ry

~

t":

~

D
M

A
I/

O

P
E

,
+

~

V
id

e
o

~

D
M

A
 S

C
S

I
R

In

te
rf

ac
e

~
IE

E
E

-4
88

~

C
o

n
tr

o
ll

er

~

C
o

n
tr

o
ll

er

~

~
C

o
n

tr
o

ll
er

~

M
e

m
o

ry

:;
.;

~

:;.;

r:.;

S
u

p
er

vi
so

r
an

d

~

S
u

p
e

rv
is

o
r

an
d

~

S
u

p
er

vi
so

r
an

d

~

S
u

p
er

vi
so

r
an

d

~

S
u

p
er

vi
so

r
an

d

S
u

p
er

vi
so

r
an

d

~

li
n

k
N

et
w

o
rk

0:

Li

nk
 N

e
tw

o
rk

~

Li
nk

 N
e

tw
o

rk

~

Li
nk

 N
e

tw
o

rk

~
Li

nk
 N

et
w

o
rk

~~r

;;r
~~~

~or
k 
~
 

In
te

rf
ac

es
 

~
 

In
te

rf
ac

es
 

In
te

rf
ac

es
 

~
 

In
te

rf
ac

es
 

In
te

rf
ac

es
 

0 
01 

(\ 
r 0

 ~l 
()

 ! 
" 

" 
J 

\ 
B

ac
k 

p
la

n
e 

L
in

k-
n

et
w

o
rk

 R
o

u
ti

n
g

 R
es

o
u

rc
e 

(P
as

si
ve

) 
\ 

U
 

Ü
 

I~I 
lJ 

I~I 
lJ 

I~I 
lJ 

1$1
 

~ 
S

u
p

e
rv

is
o

r 
B

us
 

--
--

-.
/ 

-
-
_

.
_

-
-

_ 
..

 
-
-
-
-
-
-
-
-
_

.
-

l) 
lJ 

l) 
LJ

 
<

 
P

ar
tit

io
na

bl
e 

1/
0 

B
us

 
~
 ~
 

'Y
- 16

-
-

Li
nk

s 

} 
tu

 
o

tl
lc

r 
m

o
d

u
Jc

(s
) 

~
 

~
 >- .., g. .... .... (!

) ,.., .... C
 ~ ~
 ~ ~ Ö
' Ei ~ ,.., tb
 ~ ~ C
 .... (!
) Ul I ~
 

"
-

C
 S (!
) :::: 



www.manaraa.com

Message-passing Multiprocessors 163 

although the placement of logical processors on physical processors max­
imises the locality of link configuration within a board in order to minimise 
the usage of backplane routing. 

Display Element board 

Computer graphics is an application where significant computing power is 
often required. In addition, many computationally intensive applications 
produce results which are best displayed pictorially. To support these ap­
plications the Computing Surface provides a Display Element board which 
consists of a single transputer , a Supervisor interface, a link network inter­
face, 128 Kbytes of static RAM and a display controller with a 1.5 Mbyte 
frame buffer. 

A1ass Store board 

The interfacing of Computing Surface Modules to extern al 1/0 devices, 
such as disk drives, is performed by the Mass Store (MS) boards. Each MS 
board contains a single transputer with its Supervisor bus and link network 
interface, plus 8 Mbytes of RAM and a 3 Mbyte/s DMA SCSI interface. 
Multiple MS boards can be configured in a system, permitting very high 
aggregate 1/0 bandwidths to be achieved. 

Inter-A1odule Link board 

The limitations on the physical length of standard INMOS links me ans 
that links between Modules must be supported in some other way. This 
is achieved by providing special Inter-Module Link boards, each of which 
provides sixteen hardened links that can be connected to any other Inter­
Module Link board in the system (normally in a different Module). These 
hardened links are implemented using differential ECL drivers, and can 
operate over distances of up to twenty feet. The sixteen hardened link 
interfaces are connected to a link network interface which allows them to 
be allocated to the transputers within their local Module via the backplane 
routing resource. The Supervisor buses in adjacent Modules can also be 
connected via the Inter-Module Link board to enable a single Master to 
configure a multi-Module system. 

Data Port board 

Certain types of 1/0 device are supported directly in transputer technology, 
for example the IMS M212 is a 16-bit transputer with an on-chip disk inter­
face. Special purpose 1/0 devices, or devices which require very high data 
transfer rates, are not supported directly in silicon. The Computing Surface 



www.manaraa.com

164 Architecture of High Performance Computers - Volume 11 

board library therefore contains a board which provides a mechanism for 
interfacing such devices. 

A Oata Port board comprises two data port elements. Each element 
consists of a single transputer, with the usual link network interface and 
Supervisor bus interface, 0.5 Mbytes of 20 Mbyte/s dual-ported memory, 
and an 1/0 interface controller. The link to a special-purpose 1/0 device is 
implemented via an 80 Mbyte/s 32-bit common bus located on the Module 
backplane. Each 1/0 controller manages OMA transfers in or out of the 
dual-ported memory in parallel with normal processing in the transputer. 
The common 1/0 bus consists of a 32-bit data pathway, together with some 
control and signals, and has a peak bandwidth of one word every 100 ns. 

Effectively the 1/0 bus acts rather like a 32-bit link, except that multiple 
destination processors can receive the same data simultaneously. The data 
port elements would normally communicate with special purpose boards 
such as frame grabbers, graphics output devices, multiple head disk sub­
systems, or possibly high bandwidth channels to other processing equip­
ment. 

Link Network Structure 

Ideally there should be a complete connectivity between all transputer links 
in a configurable transputer array. In practice, however, implementing this 
is firstly very costly and secondly not extensible. One could, for example, 
use a Bene!! network (see section 3.3.3) or a switch similar to the Mem­
phis switch of the IBM GFll, but the logic required to implement these 
switching functions is not linearly proportional to the number of connected 
ports and therefore could not be accommodated on the computing element 
boards. The routing method chosen for the Computing Surface involves two 
components in each Module; the backplane routing resource, and the link 
network interface chips. A manually configured system does not require the 
link network interface chips, and is adequate for systems with a fixed or 
infrequently changing topology. 

A Computing Surface Module fully populated with Quad Computing 
Elements can contain as many as 160 transputers, each of which has four 
bi-directionallinks. In order to be able to connect every possible set of links 
one would require a backplane routing resource with at least 1280 signals. 
This is beyond the limits of current packaging technology, and so a restricted 
routing resource is provided. The precise details of the capabilities and 
limitations of this restricted routing resource are not in the public domain, 
although the manufacturers claim not to have found a network of degree 
four which cannot be mapped on to the available routing resource. 

The link network interface chips are full custom CMOS devices which 
essentially contain a cross-bar switch. They permit connections between 



www.manaraa.com

Message-passing Multiprocessors 165 

the links on a board and the backplane routing resource to be set up under 
control of the Supervisor bus. Up to four of these 84-pin packages can be 
accommodated on each Quad Computing Element board. By allocating 
the user's virtual processors to the processors of the physical processors 
statically, it is possible to place them so as to maximise the connectivity 
of processors which are on the same board, thus minimising the backplane 
routing resource requirements. 

8.3 Hypercube multiprocessors 

When a message-passing processor supports a small number of point-to­
point links, statically configurable architectures with store and forward­
ing capability (whether in software or hardware), such as the Computing 
Surface, are the norm. Such architectures can be configured so that the 
maximum path length varies from O(n1/ 2) to O(logn). However, message­
passing processing elements which have at least log2 n point-to-point links 
can be used to construct a binary k-cube networkj a network known for its 
high connectivity and O(log n) path length. 

Much of the original work on hypercube architectures7 was done at 
Caltech by Seitz [Sei85,Sei83] (see also [SB77]), and from there the concept 
of a cube-connected ensemble of message-passing processing elements was 
taken up by Intel and a number of start-up companies most notably in the 
USA. 

8.3.1 Cosmic Cube and the Intel iPSC 

The Cosmic Cube [Sei85] is an experimental MIMD machine which dates 
from around 1980. It consists of 64 processing nodes connected in a bi­
nary 6-cube. Each node has a level of hardware complexity that could 
be integrated in a single chip using 1 micron feature size technology. The 
processing element comprises an Intel 8086 with an 8087 floating-point co­
processor, 128 Kbytes of parity-checked RAM, 8 Kbytes of boot ROM, and 
six fuH-duplex asynchronous communication channels each operating at 2 
Mbits/s. The Cosmic cube is very much an experimental machine, although 
benchmarks on a restricted class ofphysics related problems indicated a per­
formance roughly ten times that of a VAX 11/780 and something less than 
I/10th that of a CRAY-I. 

The Intel Personal Scientific Computer (iPSC) is a commercial deriva­
tive of the Cosmic cube architecture, and systems containing up to 128 
processors (7-cube) can be configured. Each node in the iPSC is an in­
dependent single-board computer containing an Intel 80286 processor with 

7The terms hypercube, boo/ean k-cube and binary k-cube are essentially interchangeable. 



www.manaraa.com

166 Architecture of High Performance Computers - Volume II 

an 80287 floating-point coprocessor, 512 Kbytes of RAM and 64 Kbytes of 
boot ROM. Within each node there are eight serial communication channels 
implemented using eight Intel 82586 communication coprocessors (normally 
used in Ethernet interfaces). The software overhead for message-passing, 
wh ich naturally entails a certain amount of control processing, is such that 
transmitting a zero length message takes roughly 120 J.lS. This highlights one 
of the major problems of implementing MIMD systems with conventional 
microprocessors, they do not support equally all features of the abstract 
machine seen by the user. For example, atomic operations such as ADD 
and COMPARE are supported directly in hardware but communication 
operations such as SEND and RECEIVE are not, and must therefore be 
simulated. 

The Inmos transputer does not suffer from this simulation overhead, 
nor does it require half a circuit board of logic per processor to implement 
a memory interface as in the BBN Butterfly, although the four link re­
striction currently rules out cube-connected transputer arrays. The second 
generation iPSC incorporates hardware mechanisms to improve the latency 
of message passing by introducing a circuit-switched protocol for long mes­
sages. This uses a message he ader to set up a hardware switch at each 
node it traverses, after which the body of the message is streamed through 
without software intervention. This improves the latency of a zero length 
message between nearest neighbours by about a factor of three [ISC87]. 

8.3.2 The NCUBE/IO 

In November 1985 a startup company called NCube Corp. announced the 
availability of the the NCUBE/lO, a custom VLSI implementation of the 
Cosmic cube style of architecture [JRW86]. The NCUBE/I0 contains from 
16 to 1024 processors organised from a 4-cube to a 100cube network. Each 
NCUBE processor is contained in a single 160,000-transistor HMOS chip 
fabricated using a 2.5 micron minimum feature size process. A processing 
element consists of just seven chips; a processor plus six 256K x 1 dynamic 
RAM chips. 

The architecture of the NCUBE processor is similar in many respects 
to the T800, except for the presence of eleven links rather than four. In­
ternally the NCUBE processor contains a 32-bit integer ALU with shifter, 
16 general-purpose registers, 13 special-purpose registers, a 64-bit IEEE 
standard floating-point unit, an instruction cache, a memory interface and 
eleven bi-directional serial channels. The extra link on each processor is 
used to support distributed 1/0. 

The processor is organised as a four-stage pipeline and is able to execute 
simple register-to-register instructions at a peak rate of one every 200 ns. 
Unconditional branch instructions (branching within the cache) take 500 ns 



www.manaraa.com

Message-passing Multiprocessors 167 

and conditional branches take 600 ns. However, the floating-point perfor­
mance of the NCUBE is at most 0.5 MFLOPS per processor compared with 
1.5 MFLOPS for a 20 MHz IMS T800. 

Perhaps the most impressive feature of the NCUBE is its physically 
compact construction. The small amount of memory in each processing 
element means that 64 processing elements can be accommodated on a 
single printed circuit board and hence 1024 elements are contained in a 
single rack on just 16 boards. Consequently all communication signals are 
less than 24 inches long. 

8.3.3 The FPS T series 

In an attempt to combine the power of the transputer with the connectivity 
of the binary k-cube, Floating Point Systems designed a transputer-based 
system, containing additional communication logic, capable of being con­
figured as a 14-cube. Each processing element contains a single transputer 
together with a pipelined vector coprocessor and 1 Mbyte of memory. The 
peak performance of each node is 16 MFLOPS, and hence the peak per­
formance of a fuH 14-cube would be 0.26 TFLOPS (Tera-FLOPS, or 1012 

FLOPS). However, the size and power consumption would be somewhat 
large, and to quote Lloyd Turner (president of FPS) [Mok86] 

"If the customer has an application for the T /40000, we'H 
provide the building." 

8.4 Sununary 

Message-passing multiprocessors do not suffer from the problem of access 
conte nt ion found in shared-memory systems, and thus the parallelism of 
message-passing architectures is not restricted. However, several problems 
do exists. For example, distributing the load of m parallel processes across n 
physical processors (where m > n) is not a simple task. If the load is badly 
distributed the system will have the performance characteristics of a single 
processor. There is also the problem of debugging a system of distributed 
processes in which the me ans of access to variables within each process is 
through a network of processors, some of wh ich may be in an unknown state. 
Finally, the cost of communicating between processors in a message-passing 
system is usually much greater than in a shared-memory environment, and 
this means that fine-grained computations cannot be supported efficienctly. 



www.manaraa.com

9 Multiprocessor Software 

In the quest for high performance single processor architectures, software 
is important, but does not playa critical röle. By this we mean that the 
languages and algorithms designed for one generation of high performance 
architectures can often be inherited by a subsequent generation since the 
architectural model remains sequential, and any changes can usually be hid­
den from the application. Certain machines augment the sequential model 
by introducing data-parallel operations, for example vector processors such 
as the CRAY-1 and the CYBER 205. These machines require vectorising 
compilers in order to mask their augmented model of computation from the 
application code, but processing is otherwise similar. 

In the quest for high performance multiprocessor systems, however, soft­
ware is arguably a more critical component than hardware. The reason 
for this is that the exploitation of parallelism in multiprocessors normally 
requires the application parallelism to be specified explicitly by the pro­
grammer in the form of a number of independent streams of instructions. 
Conventional languages are incapable of expressing programs in this form, 
and even if they were, conventional algorithms are not tailored to exploit 
this form of parallelism. The exploitation of multiprocessor architectures 
therefore requires not only efficient inter-processor communication hard­
ware, but new algorithms and new languages. 

In chapters 7 and 8 we discussed the arehiteeture of shared-memory and 
message-passing multiproeessors respectively. These two broad classes of 
architeeture define a diehotomy of programming languages and algorithms, 
eaeh suited to one or other class of machine. This is only true for reasons of 
efficieney, since a message-passing machine ean be programmed to simulate 
a shared-memory machine, and vice versa. 

In this chapter we introduee briefty two representative languages which 
have been devised for multiprocessor systems, and then discuss two case 
studies in the design of parallel algorithms for multiprocessors. 

9.1 Languages for multiprocessors 

Shared-memory architectures lend themselves to software environments in 
whieh variables ean be aeeessed by a number of processors operating eoneur­
rently, and it is through these shared variables that process communication 
takes plaee. Conversely, message-passing arehiteetures lend themselves to 

169 



www.manaraa.com

170 Architecture of High Performance Computers - Volume II 

software environments in which processors (and hence user processes) rilay 
only access purely local variables, with communication occuring via the 
explicit sending and receiving of inter-process messages. 

In the following sections we ex amine the ways in which the two languages 
Ada and occam support parallel processing, looking in particular at how 
they describe paralleIism and at their mechanisms for coordinating parallel 
activities. 

9.1.1 Ada 

In the search for a language suitable for programming embedded systems 
which have long life-cycles, and therefore a strong need for maintainability, 
the V.S. Department of Defense established a Higher Order Language work­
ing group in 1975. Several proposals for a new language were evaluated, 
and in May 1979 a language from Honeywell Bull in France was chosen. By 
1982 an ANSI Standard for the new language had been established (ANSI 
MIL-STD-1815). The new language was named after Augusta Ada, Count­
ess of Lovelace (1815-1852), who worked with Charles Babbage and is often 
considered to have been the first computer programmer. 

Embedded systems typically comprise a number of closely cooperating 
parallel tasks. Before the advent of Ada, many hardware systems had 
been constructed for this purpose, but languages suitable for expressing 
the cooperation between tasks were not widely available. Consequently, 
software development was ad hoc, and much effort was wasted in producing 
software packages which were similar in many respects but which relied on 
incompatible languages and systems. The primary goals of Ada were to 
improve programmer productivity and software port ability, and although 
the language contains many diverse features it is the support for declaring 
concurrent tasks, and communicating between them, which is of relevance 
to this text. 

Much of the syntax of Ada is reminiscent of Pascal, with the ma­
jor difference being the support for modular programs and multi-tasking. 
Declarations appear at the head of each program module, defining types, 
variables and subprograms (procedures and functions). These declarations 
are of two types. Those declared in the implementation part of a module, or 
in the private part of the module specification, are local to that module and 
cannot be accessed from another module. However, those declared in the 
public part of a module are visible from outside that module. Each module 
has an associated identifier, which is visible throughout the context of the 
module decIaration, and this identifier can be used to prefix the names of 
local objects when accessed from a different module. 

There are two types of module in Ada: the package and the task. Ada 
programs can be partitioned into packages for the pur pose of introducing 



www.manaraa.com

Multiprocessor Software 171 

high level structure. Thus, for example, a group of subprogram unit~ (such 
as numerical routines) can be grouped together in a package, and this not 
only makes the resulting program easier to read but makes the packaßed 
subprograms reusable. The essential idea behind packages is to disassociate 
the definition of a logical entity from the parts of a program in which it 
is referenced. Packages containing only declarations are permitted, and so 
groups of variables accessed from a number of subprogram units (or con­
current tasks) can be placed in a package for the sake of clarity. Packages 
can be thought of simply as a textual convenience, permitting the program­
mer to structure a large piece of software without really introducing any 
additional computational features. 

The second type of module is the task, and this is of much greater sig­
nificance to the computer architect since it is the sole means of introducing 
parallelism into an Ada program. In Ada, every task is defined within the 
declarative part of an enclosing program unit. This enclosing program unit 
is referred to as the parent unit, and it is involved implicitly in the initiation 
and termination of its enclosed sub-tasks. Here is a smaIl example of a task 
definition; as is the case with aIl program units, it comprises a specification 
part and a body. 

THE_PARENT: 
declare - - parent's declarations 

time: natural; 
errorJiag : boolean; 
task WATCHDOG; - - task speciflcation; 

task body WATCHDOG is 
- - this is the body of the task 
loop 

time := time + 1.0; 
ü errorJiag then 

PUT("Error detected at T = "); 
PUT(time,5); 
NEW_LINE; 

end ü; 
end loop; 

end WATCHDOG; 

begin 
- - here is the hody of the parent unit 
end THE_PARENT; 

A fundamental notion in Ada is that all tasks declared within the declara-



www.manaraa.com

172 Architecture of High Performance Computers - Volume II 

tion part of a program unit begin exeeuting, in parallel, from the moment 
the parent unit begins exeeuting. The eonditions for termintation of a 
parent task ean be defined reeursively as the eonjunetion of the termina­
tion of all sibling tasks with the termination of the parent body. Henee, 
sinee sibling tasks may themselves have furt her sibling tasks declared within 
them, all such nested tasks must terminate before the parent ean terminate. 
The trivial example shown above will therefore never terminate sinee the 
WATCHDOG task loops indefinitely. 

It is also possible to declare a task type, and this is a eonvenient way to 
ereate multiple instanees of the same task whieh are to run in parallel. For 
example, one eould simulate the behaviour of an ICL DAP processing ele­
ment as a single task which could then be replicated 4096 times to simulate 
the behaviour of a eomplete array. This eould be written as 

task type DAP _PE Is 
entry EXECUTE_INSTRUCTION(inst : in inst_pareel}; 

end DAP_PE; 

task body DAP _PE is 
loop 

accept EXECUTE_INSTRUCTION(inst : in inst_parcel} do 
- - simulate one loeal instruction 

end accept; 
end loop; 

end DAP_PE; 

The following declaration will then ereate a 64 x 64 array of DAP _PE tasks. 

DAP : array(0 .. 63, 0 .. 63} of DAP _PE; 

The specifieation of the DAP _PE task type defines an entry point ealled 
EXECUTE_INSTRUCTION, and within the body of DAP_PE there is 
an aceompanying accept statement whieh defines the sequenee of aetions 
which must be obeyed when the task aceepts an entry at that entry point. 

When eaeh of the 4096 instanees of DAP _PE is started up they eontinue 
processing up to the accept statement, and then pause until another task 
initiates a rendezvous with that task at that entry point. This is achieved 
by exeeuting the following statement within a parallel task. 

DAP(x,y).EXECUTE_INSTRUCTION(the-instruetion} 



www.manaraa.com

Multiprocessor Software 173 

In this statement, the EXECUTE_INSTRUCTION(the.instruction) part 
names the entry point and defines the parameter to be passed from the 
calling task to the called task during the rendezvous, and DAP(x,y) names 
the called task. The semantics of Ada stipulate that the calling process 
becomes suspended the moment it initiates a rendezvous, becoming active 
again only when the associated accept statements have been executed to 
completion. This is most important because it defines a mechanism for 
ensuring mutual exclusion. During a rendezvous between two tasks only 
the called task is active, and it is therefore safe for it to access data which 
are also operated on by the calling task. It is possible to write Ada pro­
grams in which tasks share data without enforcing exclusive access, since 
the scope rules of Ada permit data to be visible across the boundary of 
two parallel tasks, although under these circumstances the results of unsafe 
computations are undefined. 

Ada is therefore very much a language for tightly-coupled, shared­
memory multiprocessor architectures, typified by the Sequent Balance, the 
BBN Butterfly, and newer architectures such as the Motorola M88100 RISC 
processor. Ada can of course be implemented on a single processor machine, 
but this in itself cannot guarantee safe update of shared variables. 

One point which is worth noting about Ada tasks is their inherent asym­
metry. In particular, the calling task must name the called task explicitly, 
but the called task has no way of specifying with which task it will ren­
dezvous. This defines two categories of task: active and passive, in which 
active tasks call upon the services of passive tasks, and passive tasks pro­
vide these services by defining suitable entry points. It is important that 
the passive tasks do not have to name the task with which they rendezvous, 
since this enables them to provide a generic service to any or all of the tasks 
to which they are visible. 

Passive tasks also have the ability to express non-deterministic choice, 
whereby one of a number of possible entry points within a single passive 
task is a candidate for the next rendezvous. The choice of which entry 
point is selected depends on which entry point has an outstanding active 
task waiting to rendezvous. The following example of a simple first-in-first­
out queue illustrated this mechanism. 

task QUEUE-MANAGER is 
entry ENQUEUE(value : in queue.item); 
entry DEQUEUE(value : out queue.item); 

end QUEUE_MANAGER; 

task body QUEUE-MANAGER is 
queue : queue...structure; - - local declaration of queue 

begin 



www.manaraa.com

174 Architecture of High Performance Computers - Volume II 

loop 
select 

when not empty(queue) => 

or 

accept DEQUEUE(value : out queue..i.tem) do 
- - remove item from queue 
- - assign item to value 

end DEQUEUE; 

when not full(queue) => 
accept ENQUEUE(value : in queue..i.tem) do 

- - insert value into queue 
end ENQUEUE; 

end select; 
end loop; 

end QUEUE_MANAGER; 

As one can see from this simple example, it is possible to speeify con­
ditions wh ich must be satisfied before an entry point beeomes a eandidate 
for selection, and this is a feature found also in the the non-deterministie 
choice construct of occam explained in section 9.1.2. 

Sinee only one task can rendezvous with the QUEUE_MANAGER at 
a time, this ensures exclusive aceess to the queue data-structure during 
queue operations. In order to schedule the rendezvous correetly there is a 
task wait queue associated with eaeh entry point, and aetive tasks whieh 
attempt to rendezvous with an entry point whieh is not ready to accept 
get placed in this queue. Ada supports a strietly FIFO scheduling poliey 
for queued rendezvous. Henee the implementation of the select statement 
simply requires the passive task to sean the task wait queues in seareh of a 
waiting active-task deseriptor. This of course requires a sequence of machine 
instructions to find a suitable task with which to rendezvous, followed by 
a sequence of instructions to schedule the halted task upon completion of 
the rendezvous. If we now refer back to the speedup model introduced in 
section 6.2, we can see that the first sequence of instructions represents 
the decision time associated with the rendezvous (the basic synchronisation 
event), and that the seeond sequence of instructions represents the context 
switching time. We may reasonably surmise that since these times will be 
long in comparision with the time to execute a single machine instruction 
(in most machines) few Ada systems will be able to support fine-grain 
computations efficiently. 



www.manaraa.com

Multiprocessor Software 175 

9.1.2 Occam 

In many ways Ada is a complex language; it supports a sizeable number 
of syntactic structures and extensive data types. In extreme contrast to 
this we find occam, a language with a philosophy of 'keeping things sim­
pIe'. However, simplicity is just a syntactic convenience (or inconvenience, 
depending on one's point of view) , and the major conceptual difference be­
tween Ada and occam is that whilst in Ada data can be shared between 
tasks, in occam the same is not true. 

Occam is essentially a distributed processing language. In Ada data can 
be communicated through shared variables (although this is not intended to 
be the primary means of communication), and synchronisation is enforced 
via the rendezvous mechanism. However, in the case of occam, data can 
be communicated between processes only by explicitly sending a message 
from one process to the other via named channels. 

Occam programs are constructed from three primitive processes. These 
primitive processes perform assignment, input and output. For example, 

v : = e assign expression e to variable v 

c! e output expression e to occam channel c 
c? v input from occam channel c to variable v 

Each occam channel provides one-way communication between two concur­
rent processes. Synchronisation between processes is performed by the chan­
nel communication protocol which ensures that the communication event 
occurs only when both the receiving and the transmitting processes are 
ready to communicate. 

These primitive p!'ocesses can be combined to form meaningful pro grams 
using process constructors. For example, the most obvious way to construct 
a program fro~ a number of primitives is to execute them in sequence 
(in the same way that individual statements are assumed to execute in a 
conventional sequential programming language). There is an explicit SEQ 
constructor for expressing the sequential execution of processes, thus 

SEQ 
process.l 
process.2 

The natural dual of the SEQ construct is the PAR construct in which all 
component processes can be executed in parallel. Occam also supports a 
construct for choosing one of a number of alternative processes to execute. 
This ALT construct takes a list of guards, each with an associated process, 
and executes the process associated with the first satisfied guard. Each 
guard is a logical conjunction of a boolean expression and an (optional) 



www.manaraa.com

176 Architecture of High Performance Computers - Volume II 

input primitive, similar in many respects to a select when statement in 
Ada. For example, one may write 

ALT 
(n > 0) t chan1 ? var1 

process.1 
(n < 0) chan2? var2 

process.2 

Conditional (IF) and iterative (WHILE) constructs are also provided, but 
since these are equivalent to similar constructs found in sequential program­
ming languages they are not discussed further . The constructs discussed 
above are also processes in their own right, and can be composed to form 
nested process-structures of arbitrary depth. 

If it is required that several copies of a single process be executed un­
der one of the SEQ, PAR or ALT scheduling disciplines a process replication 
constructor can be used. This performs an analogous function to the task 
type construct in Ada. The syntax of process replication requires the spec­
ification of an activation variable (i), and a lower bound and range for the 
possible values taken by the activation variable, thus 

SEQ i = 0 FOR n 
process.1 

or 

PAR i .. 0 FOR n 
process.1 

or 

ALT i = 0 FOR n 
process.1 

A replicated SEQ construct creates neopies of process.1 which are 
subsequently executed in sequence, terminating on completion of the n th 

proeess. A replicated PAR eonstruet again creates neopies of process.1, 
but may (if there are suffieient hardware resourees) exeeute them in par­
allel. The PAR eonstruet terminates when alt eomponent processes have 
terminated. A replicated ALT construet causes one of n vers ions of pro­
cess.1 to be created and executed, with the choice depending on the first 
of n guards to be satisfied. 

Replication can also be applied to communication channels to permit 
the declaration of vectors of channels, thus channels link [0] ... link [n-1] 
can be declared by writing: 



www.manaraa.com

Multiprocessor Software 177 

[n]CHAN OF ANY link: 

An essentially unlimited number of channels can be declared provided they 
connect processes executing on the same transputer. However, the fixed 
number of inter-transputer links together with the direct mapping of one 
occam channel to one physical transputer link, me ans that only four chan­
nels are available for connecting processes which reside on adjacent trans­
puters. 

There is greater symmetry in occam channels than there is in Ada 
rendezvous, since in occam the communicating processes must both name 
a unique unidirectional channel in order to effect the transfer of a message. 
There is still some asymmetry in that only the receiving process can express 
non-deterninistic choice over the channel from which it is willing to accept 
a message. 

This summary of occam and its relation to the transputer is necessar­
ily brief, and serves only to highlight the language features which support 
concurrency. The interested reader should consult the occam Programming 
Manual [INM84], the occam 2 ReJerence Manual [INM88], or Brookes and 
Stewart [BS89] for more detailed tutorials on programming in occam. 

9.2 Multiprocessor algorithms 

This book is concerned primarily with the design and analysis of high per­
formance parallel computer architectures. However, since the design of any 
system is heavily infuenced by its intended use, it is appropriate to consider 
not only the hardware structures and programming language interface but 
also one or two representative application algorithms. The analysis of paral­
lel algorithms can yield useful information, particularly ab out the quantity 
and granularity of parallelism, and from this one can quantify the expected 
execution time for a particular input data size. By comparing this with the 
expected execution time of an equivalent sequential algorithm one obtains 
a value for the expected absolute speedup. These metrics can also be used 
in conjunction with system performance models, such as the one outlined 
in section 6.2 to predict speedup and efficiency. Results of these analyses 
indicate to the computer architect the areas in which the system as a whole 
is performing adequately and, more importantly, the areas in which it is 
not. 

In the following sections we investigate two multiprocessor algorithms: 
the first is intended for use in shared-memory systems supported by lan­
guages such as Ada, and the second is intended for use in distributed mem­
ory systems supported by languages like occam. 



www.manaraa.com

178 Architecture of High Performance Computers - Volume II 

9.2.1 Sorting on a shared-lllelllory architecture 

Sorting is an important activity in computing, and one which is often cited 
as a model problem for parallel machines. It has been shown that any 
sequential sorting algorithm based on pair-wise comparisons must have a 
time complexi ty of {1 (n log n). N umerous methods for red ucing this by 
using multiple processors have been devised, for example Batcher's bitonic 
merge algorithm [Bat68] sorts n items in 6(log2 n) time using a network of 
nlog2 n(log2 n + 1)/4 simple comparators. For a survey of parallel sorting 
algorithms the reader should consult [BDHM84]. 

In this section we consider the development of a simple parallel sorting 
algorithm, using the well-known sequential Quicksort algorithm as a basis 
from which to begin. In some ways one's choice of initial sequential algo­
rithm is influenced by the architecture of the multiprocessor system being 
used. For example, we know that in a shared-memory system a number 
of tasks can sort independent sections of a common data structure simul­
taneously. We mentioned earlier that an analysis of parallel algorithms 
should yield information which is useful to the designer of parallel archi­
tectures. This completes a circular argument, and serves to stress that the 
design of parallel algorithms is an iterative, and often an intuitive, process. 

The Quicksort algorithm is an efficient (internal) sequential sorting algo­
rithm which contains independent sub-computations, and thus has potential 
for parallel processing. The simplest variant of the Quicksort algorithm can 
be defined as folIows; 

1. Given an array K[/ ... u] of keys, partition the array such that the 
value originally at position K[/] is at position K[i], and all values 
ranked below K[i] are in locations I . .. i-I, and all values ranked at 
the same level or higher than K[i] are in locations i + 1 ... u 

2. If i-I> 2 then perform step 1 on the sub-array K[/ ... i-I] 

3. If u - i > 2 then perform step 1 on the sub-array K[i + 1 ... u] 

There are two points to note here: firstly, steps 2 and 3 both require 
step 1 to be completed before they can proceed. Secondly, steps 2 and 3 
are completely independent, and therefore can execute in parallel. This is 
an example of non-linear recursion, where each procedure (or task) creates 
more than one recursive (and independent) call on itself. Figure 9.1 shows 
the temporal relationships between a number of such calls. 

Let us now consider how this could be implemented on a shared-memory 
architecture using Ada. Following this we outline some techniques with 
which one can analyse the behaviour and performance of this algorithm. 
Since we are considering an implementation on a shared-memory architec­
ture no decomposition 01 data is required. However, we must partition the 



www.manaraa.com

Multiprocessor Software 179 

parallelism -
T .. 

I--

T .. 

I--

T .. 

I--

T .. 

T7 = 
T .. 

Q('3+1.·N) 

T6 = 
T .. 

Q('l +1.·'a- 1) 

Ta = Q(h+l..N) Ts = 
T .. 

Q('2-1.·'l-1) 

Tl = Q(l..N) T2 = Q(l..h-l) T~ = 
T .. 

Q(1.·'2- 1) 

time/l 

Figure 9.1 Idealized parallel deeomposition 0/ Quieksort, where Hk is the 
harmonie series given by 2::=1 i-I 

computation to define the unit of parallelism, and devise a scheme whereby 
the tasks can coordinate their activity. 

We have already identified the recursive calls to the Quicksort procedure 
as potential parallel tasks, and so let us define a task type which performs 
a Quicksort on a sub-array of unsorted keys given lower and upper bounds 
on array index defining the set of keys to be sorted. The Quicksort task 
operates by repeatedly executing a loop until it is told by the MANAGER 
that there is no more work. Within each loop a Quicksort task obtains a pair 
(l,u) from the MANAGER by executing a rendezvous with the MANAGER 
at the DISPATCH entry point. After this rendezvous (l,u) defines a range of 
keys which the task must take responsibility for sorting during that iteration 
of the loop. The condition for termination is if the MANAGER dispatches 
a pair (l,u) ror which l=u. If this is not the case then the sub-array must be 
partitioned according to the Quicksort method, and this can generate two 
further pairs (l,i-1) and (i+1,u) which each define a sub-range of the given 
sub-array which can be parallelised still further. These are entered into the 
queue of pairs by executing one rendezvous with the MANAGER for each 
valid pair, at the RECEIVE entry point. 



www.manaraa.com

180 Architecture of High Performance Computers - Volume II 

task type QUICKSORTj 

task body QUICKSORT is 
i, I, u : integerj busy : booleanj 
- - any other local variables 

begin 
busy := truej 
while busy loop 

- - get some work from the MANAGER 
MANAGER.DISPATCH(I, u); 
- - test to see if sort is complete 
if 1= u then 

busy := false 
else 

- - Partition K[l...u] according to Quicksort algorithm, 
- - and let i be the position of the new sorted element. 
- - Now generate more work if necessary. 
ifi /= I then 

MANAGER.RECEIVE(I, i-I); 
end if; 
ifi /= u then 

MANAGER.RECEIVE(i+l, u); 
end if; 

end ifj 
end loop; 
end QUICKSORTj 

The manager of the tasks maintains a queue of pairs (l,u) which describe 
sub-arrays which need to be sorted. The code for the task manager is very 
similar to the FIFO queue example described on page 173. The only differ­
ence is that the items to be queued are pairs of integers rather than values 
of type 'queueJtem'. The ENQUEUE entry point is renamed RECEIVE, 
and the DEQUEUE entry pointy is renamed DISPATCH. In addition, the 
MANAGER task must detect when the array of keys has been completely 
sorted, and inform the QUICKSORT tasks. Failure to do this would result 
in deadlock, and hence non-termination of the algorithm. 

task MANAGER is 
entry DISPATCH(l, u : out integer); 
entry RECEIVE(I, u : in integer); 

end MANAGER; 



www.manaraa.com

Multiprocessor Software 

task body MANAGER is 
sorted : integerj 
the_workers: array (1 .. number_oLsorters) of QUICKSORT 

begin 
sorted := Oj - - must terminate when sorted = size 
- - now dispatch the first task explicitly 
accept DISPATCH(l, u : out integer) do 

1 := Ij u := sizej 
end acceptj 
while sorted /= size loop 

select 
when not empty(workAueue) => 

or 

accept DISPATCH(l, u : out integer) do 
- - get next (1, u) pair from queue 
sorted := sorted + 1 j 

end acceptj 

when not full(work_queue) => 
accept RECEIVE(l, u : in integer) do 

- - put the (1, u) pair into the queue 
end acceptj 

end selectj 
end loopj 
for sorted in l..number_of...sorters loop 

accept DISPATCH(l,u : out integer) do 
1 := Ij u := Ij - - this will terminate the sorter tasks 

end acceptj 
end loop 
end MANAGERj 

181 

This piece of code requires some explanation. The QUICKSORT task 
type is used to generate a Jized number of QUICKSORT task instancesj the 
actual number will depend on how much physical parallelism there is in the 
the target hardware. For example, when running on a single processor, there 
is absolutely no advantage in generating more than one QUICKSORT task. 
The manager task detects termination by counting the number of sorting 
operations it dispatches to the workers, and since each dispatched task 
results in exactly one item being placed in its correct position, providing 
a direct mechanism for detecting when the parallel sorting operation is 
complete. 

This parallel version of Quicksort uses a task decomposition scheme 
known as recursi1Je divide-and-conquer. This scheme can be particularly 



www.manaraa.com

182 Architecture of High Performance Computers - Volume II 

G 

Figure 9.2 Task graph for parallel Quicksort 

effective at generating large quantities of parallelism since the parallelism 
can grow exponentially. However, as is the case with this example, much of 
the work done in each task is related to the creation of tasks (that is, the 
decomposition itself), and as the number of tasks mushrooms towards the 
end of the computation the amount of real work done per task becomes quite 
smalI. In a practical parallel sorting algorithm one would not decompose 
the problem down to the most trivial case (as we have done here), but stop 
generating tasks when an optimum value for u-l is reached and revert to a 
sequential sorting algorithm. 

Let us now ex amine this parallel algorithm from the point of view of 
deriving an expression for the expected execution time on a parallel machine 
with a given number of processors. Observing figure 9.1 one can see that the 
total execution time depends on the length of the path from the initiation 
of the root task to the termination of the final leaf task. This can be 
represented as a task graph G, as shown in figure 9.2, in which Ti denotes 
task i and Ti has execution time ti. In the parallel Quicksort algorithm the 
values of ti depend on the distribution of values within the range of keys 
to be sorted since at each stage the algorithm chooses a supposedly median 
value from the values to be sorted and ranks the remainder with respect to 
this value. 

Some definitions 

Given a set of tasks Tl, T2 , ••• , Tn that are partially ordered in their execu­
tion sequence by a precedence relation<, we call Ti a predecessor of Tj (and 
Ti a successor of Ti) if Ti < Ti' In terms of scheduling, this means that Ti 
must not begin executing until Ti has terminated. If Ti < Tj and there is no 



www.manaraa.com

Multiprocessor Software 183 

task Tk for which Ti < Tk and Tk < Ti then Ti is an immediate predecessor 
of Ti (and Ti an immediate successor of Ti). Tasks with no predecessor are 
initial and tasks with no successor are final. 

Using these notions we can define formally the task graph G to be the 
set of nodes Ti {I ~ i ~ n} in which there is a directed are from Ti to Ti if Ti 
is an immediate predecessor of Ti' A set of tasks is said to be independent 
if for any tasks Ti,Ti in the set, neither Ti < Ti nor Ti < Ti. The width of 
G (written width(G» is the maximum of the sizes of all independent sets 
of tasks. We also define a chain of tasks to be a task graph in which the 
tasks are totally ordered, and then the length of the chain is the number of 
tasks in the chain. The depth of a graph G is the maximum length of all 
the chains in G. 

Estimating execution times 

A probabilistic analysis of the execution times for statically decomposed 
tasks {where the decomposition is not computed 'on-the-Hy'} has been given 
by Robinson [Rob79], and here we apply his techniques to our example. 

Let tG be a random variable which represents the execution time of 
graph G, and let FG be the cumulative distribution function (c.d.f.) for 
tG. In order to make statements which express tG and FG in terms of the 
individual task execution times ti, and task c.d.f's Fi, the task graph must 
be simple. A simple task is defined as follows. Let Cl, C2 , ••• ,Cm be all 
chains from initial to final tasks in G. We define an expression Ei for all 
chains Ci containing tasks Til , Ti2" .. ,Tik , such that Ei = xi} Xi2 ••. Xik' and 
then G is said to be simple if the polynomial expression Ei + E2 + ... + Em 

can be factored such that each X appears only once. Simple task graphs 
correspond to parallel programs in which task creation always takes the 
form 

PAR(P1; P2; P3; ... ; Pn) 

and where the sub-tasks P1 to Pn do not synchronise with any task except 
at their initiation and termination. 

If we assurne that the execution times of all mi tasks at level j in a 
simple task graph G, of depth L, are identically distributed with mean J..I.i 
and standard deviation ui, then on k processors, where k ~ width{G), the 
upper and lower bounds on the expected execution time, denoted E{tG) can 
be derived using Order Statistics [Dav70, pp.46-48], [Rob79], and are given 
by equation 9.1. 

L L ( ) m· -1 
L,J..I.i ~ E{tG) ~ L, J..I.i + J Uj 
;=1 ;=1 v'2m; - 1 

(9.1) 



www.manaraa.com

184 Architecture of High Performance Computers - Volume II 

Figure 9.9 State-transition diagram Jor parallel Quicksort 

The conditions under which this equation applies describe an impor­
tant but rather restricted dass of parallel algorithms. For example, k 2 
width(G) implies that there are enough processors to absorb all task parallel­
ism all of the time, and in most cases this is unrealistic . A more satisfac­
tory analysis technique for dynamically decomposed algorithms (such as the 
Quicksort derived earlier) is that of using queueing models [Kle75]. 

It is possible to analyse divide-and-conquer algorithms like Quicksort 
by considering the divide and conquer phases separately (even though the 
two phases may be interleaved). Given k processors as before, and a level of 
partitioning which results in M leaf tasks (sequen tial Quicksort proced ures), 
the sequential creation and execution of M tasks can be represented by 
astate-transition diagram, as illustrated in figure 9.3. Note, although 
each Quicksort task is theoretically capable of creating two sibling tasks in 
parallel, enforced sequential access to the task queue means that in practice 
they are created sequentially. 

In figure 9.3 each state is identified by astate variable which in this case 
is defined as the number of tasks in the task queue (initially one). The times 
to decompose and execute tasks are assumed to be exponentially distributed 
with means of d;1 and eM respectively, where i is the instantaneous task 
queue length. Hence, the me an time to decompose and execute M tasks 
on k processors can be found by summing the me an state-transition times 
from the start of the Quicksort algorithm to its termination. The me an 
execution time is then E(T) 

E(T) = ~1 (min(i, k)d;)-1 + eiJ ( M; k + ~ i-1) (9.2) 

In any realistic model of execution time on a parallel architecture the mean 
decomposition time d; must take account of the time to access a shared 
queue, which in most cases will be a function of k. 



www.manaraa.com

Multiprocessor Software 185 

These short examples hopefully serve to illustrate typical techniques that 
can be used to analyse the execution time of parallel algorithms without 
entering into lengthy details which can be found in existing texts. 

9.2.2 Matrix multlplication using message-passing 

In this section we look at the design and implementation of a distributed 
numerical algorithm for computing the product of two square matrices, and 
use the occam language to illustrate how message-passing primitives form 
a key element in these types of algorithm. 

Consider the multiplication of two n x n matrices a and b to produce a 
result matrix c. The method of computing C can be defined by the following 
equation. 

n 

Cij = L aikbkj ; i,j E {I ... n} (9.3) 
k=1 

The first, and most obvious, point to note about this algebraic speci­
fication of matrix multiplication is that it defines a set of n2 independent 
computations. Secondly, each independent computation is a dot-product 
operation comprising 2n dyadic operations (multiply and accumulate) on a 
total of n pairs of input values. However, there are only 2n2 input values in 
a and b, compared with n2 X 2n dot-product input operands, so clearly each 
matrix element from a and b must be used in n independent calculations. 

Since the total number of arithmetic operations is 2n3 , and the total 
number of memory accesses needed to satisfy the operand requirements is 
also 2n3 , the memory bandwidth and CPU bandwidth requirements are 
perfectly matched. This is only true, however, if the rates of memory and 
CPU processing are equal. If one introduce parallelism into the evaluation 
procedure the balance becomes upset. Consider what happens if we use 
n2 processors to compute all Cij concurrently. The minimum theoretical 
computation time, assuming purely sequential processing for each Cij, isjust 
2n. If the memory bandwidth is not increased by a factor of n 2 then the 
utilisation of processors will be less than unity, and the parallel processing 
efficiency will be poor. 

One solution to this problem is to provide highly parallel access to shared 
memory as in the BBN Butterfly, the IBM RP3, and many others. A con­
commitant problem is then the arrangement of memory access patterns to 
ensure that memory bank collisions do not cause undue interference between 
processors. This is a problem that has been studied widely, in particular 
by Lawrie, Chang and Kuck [Law75,CKL77]. The cast of providing the 
required bandwidth to a shared memory structure is sometimes tao great, 
and then other techniques must be sought. 



www.manaraa.com

186 Architecture of High Performance Computers - Volume II 

An alternative suggested by Kung [Kun82], known as systolic process­
ing, gets round the problem of memory bandwidth by using each value 
retrieved from memory several times. Systolic systems operate by pumping 
each operand value through an array (a systolic array) of processing elem­
ents, in such a way that each value is used at each processor it encounters. 
Systolic arrays normally perform the same computation at each PE in the 
array, and the movement of information between PEs is normally consid­
ered to be synchronous. Input and output from the array oeeurs only at 
the boundary of the array. This conceptual view of systolic arrays, in wh ich 
there exists a common dock, is useful for analysing their logieal behaviour 
although in praetiee the distribution of a eommon doek aeross indefinitely 
large 2-D array structures is not feasible. Systolic arrays are typified by 
e(k) proeessing elements conneeted by a regular static network containing 
e(k) unidirectionallinks. From an oeeam programming point of view this 
is ideal sinee it eorresponds directly with the notions of oeeam channels and 
processes. Let us now consider a systolic implementation of matrix multi­
plication using a two-dimensional systolic array, and then devise a suitable 
implement at ion using oeeam. 

In figure 9.4 the outline of a systolic matrix multiplier is illustrated, 
showing an array of PEs, their communication pathways, and the order 
and placement of input operand values. One ean see that for both the a 
and b matriees a watJefront of values flows into the array at the Northern 
and Western perimeters. The staggering of the rows and columns along 
each input perimeter ensures that the eorrect values meet in the correct 
processing element. To make the array work properly, areal implementation 
of this sehe me would eontain a mechanism for inserting zero values before 
(and after) each staggered a and b vector where required. For darity these 
are omitted from figure 9.4. 

Verifieation of eorrectness 

The regularity of many systolie arrays permits the designer to verify for­
mally that the systolie implementation meets the specifieation of the al­
gorithm. In the seheme presented in figure 9.4 the array operates syn­
ehronously by propagating the a values one array-position Eastward and 
the b values one array-position Southward on eaeh doek eyde. At every 
processor Pii for whieh at least one pair of non-zero values has been re­
eeived, the Ioeal sum (wh ich is initially zero) is ineremented by the produet 
of the Iocal a and b values. 

Theorem 
At every proeessor Pii {I ~ i ~ n, 1 ~ j ~ n} the loeal sum Ci; after 2n-1 
doek cydes is given by Ci; = L:k=l aikbk;. 



www.manaraa.com

Multiprocessor Software 187 

bn,n 

bn ,2 bn ,3 

bn,l b2•n 

b3,2 b2•3 • • • b1,n 

b3,1 b2,2 b l •3 

b2,1 bl,2 

bl,l 

• • .-$-
• 

a3,n • .• a3,2 a3,1 • 

• • • 
• • 
• • 

-$4 • • • -$-
Figure 9.4 A systolic matrix multiplication scheme 

Proof 
The alignment of input values ente ring the Northern and Eastern perimeters 
is such that values aile and blei {I :s; k :s; n} are deIayed from entering the 
array for i-I clock eycles. Hence, at proeessor P z" in doek eyde t the Ioeal 
values of a and b, denoted a(x, y) and b(x, y) are given by the following two 
equations, assuming L = max(x, y). 

a(x,y) = { 
0 ift < i 

(9.4) 
a",L-t ift2':i 

b(x, y) = { 
0 ift< i 

(9.5) 
h-t,z ift 2': i 



www.manaraa.com

188 Architecture of High Performance Computers - Volume II 

Consequently, after L clock cycles, processor P ii receives its first pair of 
non-zero valuesj an and b1i . During the sub se quent n clock cycles the 
sequence of pairs (ai2' b2i ), (aiS, bsi ), ... , (ain, bni ) passes through P ii' By 
observation it is clear that the summation of the products of these pairs 
will produce a value equivalent to L:k=1 aikbkj. Since this is assigned to cii 
the specification is met. 0 

The leading and trailing zero values, not shown in figure 9.4, are neces­
sary only because this is a synchronous systolic array, so when one processor 
receives input all processors receive input. With an asynchronous message­
passing protocol, such as occam channels, this can be avoided and this 
leads to a cleaner and simpler solution. 

We now define an occam process for a single PE which takes input from 
its North and East links, performs a local computation and passes the input 
values to its neighbours via the South and West links. 

PROC element(CHAN OF REAL North, South, East, West) 
REAL a, b, sum; 
SEQ 

sum := 0; 
SEQ i .. 0 FOR N 

SEQ 
PAR 

North? a 
West? b 

sum := sum + Ca * b) 
PAR 

South! a 
East! b 

This process contains an iterative loop which receives a and b values in par­
allel (to avoid possible deadlock, and maximise communication bandwidth). 
Since the process performing the parallel input of a and b values does not 
itself terminate until 60th values have been received, no zero values need 
to be inserted to forcibly align the two input streams at each position in 
the array. For example, processor P 4,1 will not begin executing the first 
sum: =sum+ (a * b) statement until it has received a4,1 and b1,1. This only 
occurs after processors PI,! ... PS,! have each computed their first iteration. 
It is the occam channel protocol wh ich ensures that computations begin 
when their data are available, and this form of processing is usually referred 
to as data-driven processing. 

An array of element processes can be declared by first defining vectors 



www.manaraa.com

Multiprocessor Software 189 

of channels, and then initiating n 2 processes from within a harness process, 
thus 

VAL n IS 100: 
[n+l] [n+l] CHAN OF REAL NS. WE: 
PAR 

PAR i = 1 FOR n 
PAR j = 1 FOR n 

element(NS[i] [j-l]. NS[i] [j]. WE[i-l] [j]. WE[i] [j]) 
Read a and b values from memory and input 

- - to WE[O] [1 .. n] and NS[l .. n] [0] respectively. 

This simplistic scheme omits the check for boundary conditions on the 
Southern and Western boundaries, where processors would otherwise at­
tempt to output to non-existent processors: this could be prevented by the 
addition of a simple test in each element process. For clarity the sequenc­
ing of input values and the removal of output values has also been omitted 
from this example. 

Process placement 

Placing n 2 processes on less than n2 physical processors could pose some­
thing of a problem. The transputer , which is the target hardware for oc­
cam, can support many processes in each processor, but at present has 
only four hard links (eight channels). This is a problem which is apparent 
to all transputer-based systems, such as the Meiko Computing Surface, the 
PARSYS SN1000 series (formerly ESPRIT project 1045), and many smaller 
systems. The actual placement of processes is dictated largely by the phys­
ical topology of the transputer array, except in machines which have the 
ability to reconfigure the links. 

An array of n X n element processes can placed on an array of less than 
n 2 transputers in several ways. For example, the array could be divided into 
strips of rows or columns w processes wide, thus placing w x n processes in 
each transputer, leading to a requirement for at least 2(w+n) unidirectional 
channels going into or out of each transputer. 

If each transputer is given responsibility for a pxp square sub-array, then 
at least 4p channels are required for each transputers. For a fixed size array 
of transputers, say mx m, the number of channels required per transputer 
is p = 4n/m. However, in conventional terms, the input problem size, N, 
is equal to n2 • Hence, we can say that the number of channels required 
per processor is E>(N1/ 2). This conflicts somewhat with the 0(1) hardware 
links provided on the transputer devices. It is therefore common for occam 
programmers to write a routing harness which maps k (k > 4) soft channels 



www.manaraa.com

190 Architecture of High Performance Computers - Volume II 

down to just eight unidirectional hard channels, effectively multiplexing the 
communication bandwidth at the program level. 

The inter-transputer communication bandwidth requirements of the sys­
tolic matrix multiplication algorithm are proportional to the perimeter of 
each sub-array, and the computational requirements are proportional to the 
area of the sub-array. In the transputer, communication and computation 
in different processes can occur simultaneously, and therefore if the actual 
time spent communicating through the off-chip links is not greater than 
the total computation time of p2 element processes then the utilisation of 
each transputer will be determined only by the granular efficiency of each 
element process. If the reverse is true, then the utilisation of each trans­
puter will naturally be limited by a communication bottleneck. Therefore, 
in transputers there are two efficiency consideration: firstly, the granular 
inefficiency introduced when two processes communicate within the same 
transputer , and secondly the inefficiency wh ich arises due to the communi­
cation between chips. 

Let us for the moment assurne a unit delay for communicating a value 
between two element processes, and ex amine the performance of this dis­
tributed matrix multiplication algorithm. The time taken to propagate a 
and b values to Pn •n (the process farthest away from the sour ce of input), 
denoted here by tpg , is equal to the number of inter-process hops from the 
input perimeters (North and West) to the bottom right-hand corner, mul­
tiplied by the communication time per hop. This is given by equation 9.6. 

tpil = (n - 1)(tcalc + tprop ) (9.6) 

In this equation, tcalc refers to the time taken to evaluate 

s := s + (a * b) 

and tprop refers to the time taken to evaluate 

PAR 
South a 
East! b 

Note, we do not include the time taken to input the a and b values since that 
activity is overlapped with the reception of a and b values in an adjacent 
processor. The time from the initiation of the first element computation 
(that in PI.tl to the termination of the last element computation (that in 
Pn •n ), on an n x n array, is given by T(n) and is equal to the propagation 



www.manaraa.com

Multiprocessor Software 191 

time t pg plus the time to complete n iterations of the main loop in the 
element process. Henee, 

T(n) = (2n - l)(tca l c + tprop ) (9.7) 

The granular efficieney of this parallel computation (see equation 6.2 on 
page 97), denoted '1g, is given by 

(9.8) 

The absolute speedup or gain of a parallel algorithm is defined as the ratio of 
the exeeution time of the best equivalent sequential algorithm to the exeeu­
tion time of the parallel algorithm, expressed as a function of the exploited 
parallelism. In the ease of matrix multiplication, the best sequential algo­
rithm which does not parallelise within the dot-product operation has an 
execution time Ts which involves n3 multiply-aecumulate operations, each 
of wh ich takes a time of tcalc ' 

(9.9) 

Consequently, we ean write down a simple equation for the parallel process­
ing gain, CII' on this algorithm thus 

which is equivalent to 

CII = '1g (2nn~ 1) (9.10) 

This concludes our discussion of speedup and efficieney for this sys­
tolie algorithm. Among the points worth noting are that relative speedup 
(CII/7Jg) is O(n2 ) on n2 proeessors, whieh is O(N) for input of size N. 
This is characteristic of systolic arrays, and means that the array can be 
scaled up in proportion to the size of the input without any degradation in 
performance. 

9.3 Summary 

In this chapter we have looked at multiprocessor software from two view­
points. Firstly, by considering languages for multiprocessors, and secondly 
by considering algorithms for multiprocessors. Following on from our treat­
ment of multiprocessor systems in chapters 7 and 8, in which the distinction 



www.manaraa.com

192 Architecture of High Performance Computers - Volume II 

between shared versus distributed memory is emphasised, we have exam­
ined a typicallanguage and a typical algorithm for each of these two classes 
of machine. Although this is a very coarse classification of multiprocessor 
systems, the general principles have been expounded. We also looked briefly 
at some techniques for estimating the execution times of parallel algorithms, 
under both static and dynamic decomposition sehernes. Those interested 
in pursuing this line of study further, should consult Quinn [Qui87] which 
eontains a chapter on the design of parallel algorithms, and ehapters on 
eaeh major class of problem. Quinn also presents bibliographie notes on 
most aspects of parallel algorithms. Kleinrock [Kle75] deseribes the theory 
behind queueing networks, and their application in analysing the through­
put of certain types of eomputing system. Many of these teehniques ean 
also be applied to parallel systems. 

This book has aimed to introduee the reader to a variety of topics that 
are relevant in the field of high performance architectures. We began by 
looking at the architecture of SIMD array processors, their interconnection 
techniques (which are also applicable to MIMD systems), and their pro­
gramming methods. We have studied the architecture of so me large scale 
SIMD systems, such as the DAP and the Connection Machine, and exam­
ined their performance at a number of levels. The second half of this book 
has been devoted to multiprocessor architectures, from their design princi­
pIes to example systems, and finally to so me of the software implications of 
such architectures. 

It is likely that parallel processing will take on greater significance as the 
implementation technology of multiprocessor systems matures. As we have 
seen from chapter 7, these systems can range is size from small (less than 32 
processors) systems connected using a single high performance bus, up to 
quite large systems (more than 128 processors) connected using multi-stage 
networks. Bus-connected systems can provide a significant cost advantage 
in multi-user applieations, rat her than genuinely concurrent applications, 
since relatively low communication bandwidth can be tolerated. We have 
seen that to support genuinely concurrent applications a signifieant degree 
of coneurrency in the processor interconnection mechanism is essential. 

The architectures deseribed in volume I all have the same basic goal; 
to make a single stream of instructions execute as fast as possible without 
significant modification at the source code level. This naturally involves 
techniques which optimise the placement of information (storage hierar­
chies) and the exploitation of low-Ievel parallelism (parallel functional units 
and pipelining). Vectorising compilers are used to bridge the semantic gap 
between wh at the programmer specifies and how the machine is capable 
of realising that specification. Sometimes this gap is too wide, and users 
are obliged to insert compiler directives into their programs. The types of 



www.manaraa.com

MuItiprocessor Softwa.re 193 

a.rchitecture described in this volume are qualitatively different in the sense 
that the semantic gap between the architecture and a sequential program 
is so wide that a different approach to programming is required. Architects 
and users of these array processors and multiprocessors have evolved their 
own languages (or language variants), so me of which we have outlined in 
this book. We have hopefully convinced the reader that the task of cre­
ating software for parallel computers is not simply a problem of re-coding. 
existing algorithms. Furthermore, the automatie conversion of existing ap­
plications to run n-times faster on an n-processor machine is a non-trivial 
task, and one which at present limits the commercial applicability of paral­
lel systems to existing software. However, in many cases, the availability of 
highly parallel systems encourages the development of solutions to problems 
previously considered either impractical or too expensive. 



www.manaraa.com

Bibliography 

[Aus79] 

[Bac78] 

[Bat68] 

[Bat74] 

[Bat76] 

[Bat77] 

[Bat80] 

J.H. Austin. The Burroughs Scientific Processor, pages 1-3l. 
Volume 2, Infotech Intl Ltd., Maidenhead, 1979. 

J. Backus. Can Programming be Liberated from the von Neu­
mann Style? Communications 0/ the ACM, 8:613-641, 1978. 

K.E. Batcher. Sorting networks and their applications. In Pro­
ceedings 0/ the Spring Joint Computer Con/erence, pages 307-
314, AFIPS Press, Reston VA, 1968. 

K.E. Batcher. STARAN Parallel Processor System Hardware. 
In Proc. AFIPS-NCC, pages 405-410, 1974. 

K.E. Batcher. The FLIP Network in STARAN. In Int. Con/. 
Parallel Proc., pages 65-71, 1976. 

K.E. Batcher. Multi-dimensional Access Memory in STARAN. 
IEEE Transactions on Computers, C-26:174-177, 1977. 

K.E. Batcher. Design of a Massively Parallel Processor. IEEE 
Transactions on Computers, C-29:836-840, 1980. 

[BBK*68] G.H. Barnes, R.M. Brown, M. Kato, D.J. Kuck, D.L. Slotnick, 
and R.A. Stokes. The ILLIAC IV computer. IEEE Transac­
tions on Computers, C-17:746-57, 1968. 

[BDHM84] D. Bitton, D.J. De Witt, D.K. Hsaio, and J. Menon. A taxon­
omy of parallel sorting. ACM Computing SurtJeys, 16(3):287-
318, September 1984. 

[BDW85] J. Beetern, M. Denneau, and D. Weingarten. The GFll Su­
percomputer. In Proc. 12th Annual Symposium on Computer 
Architecture, pages 108-115, 1985. 

[Ben64] V. Beneä. Optimal Rearrangeable Multistage Connecting Net­
works. Bell System Technical Journal, 43(4):1646-1656, 1964. 

[Ben65] V. Beneä. Mathematical Theory 0/ Connecting Networks and 
Telephone Tratfic. Academic Press, New York, 1965. 

194 



www.manaraa.com

Bibliography 195 

[BS89] G.R. Brookes and A.J. Stewart. Introduction to occam 2 on the 
Transputer. Macmillan, London, 1989. 

[CGH*72] B.A. Crane, M.J. Gilmartin, J.H. Huttenhoff, P.T. Rus, and 
R.R. Shively. PEPE Computer Architecture. In IEEE Comp­
con, pages 57-60, 1972. 

[CGS*85] W. Crowther, J. Goodhue, E. Starr, R. Thomas, W. Milliken, 
and T. BIackader. Performance measurements on a 128-node 
Butterfly parallel processor. In Proc. 1985 International Con­
Jerence on Parallel Processing, pages 531-540, 1985. 

[CKL77] 

[Dav70] 

[Den68] 

[Dij65] 

[FaI76] 

[Fen81] 

[Fly72] 

[FT79] 

[FW60] 

[GGK*83] 

[GL73] 

D. Chang, D.J. Kuck, and D.H. Lawrie. On the Effective Band­
width of Parallel Memories. IEEE Transactions on Computers, 
Vol. C-26(5):48ü-490, May 1977. 

H.A. Davis. Order Statistics. Wiley, New York, 1970. 

P.J. Denning. The working set model for program behaviour. 
Communications of the ACM, 11:323-33, 1968. 

E. W. Dijkstra. Cooperating Sequential Processes. Academic 
Press, New York, 1965. 

H. Falk. Reaching for the gigaflop. IEEE Spectrum, 13(10):65-
70, 1976. 

T.Y. Feng. A Survey of Interconnection Networks. IEEE Com­
puter, 12-27, Dec. 1981. 

M.J. Flynn. Some Computer Organisations and their Effective­
ness. IEEE Transactions on Computers, C-21:948-960, 1972. 

G.R. Frank and C.J. Theaker. The Design ofthe MUSS Operat­
ing System. Software - Practice and Experience, Vol. 9:599-620, 
1979. 

G.E. Forsythe and W.R. Wasow. Finite-difference Methods Jor 
Partial Differential Equations. Wiley, London, 1960. 

A. Gottleib, R. Grishman, C.P. Kruskal, K.P. McAuliffe, L. 
Rudolph, and M. Snir. The NYU Ultracomputer - Designing 
a MIMD Shared Memory Parallel Machine. IEEE Transactions 
on Computers, C-32(2):175-189, 1983. 

G.R. Goke and G.J. Lipovski. Banyan Networks for Partition­
ing Multiprocessor Systems. In 1st Annual International Sym­
posium on Computer Architecture, pages 21-28, 1973. 



www.manaraa.com

196 

[GM63] 

[Gos80] 

[Gro75] 

[GS82] 

[HB84] 

[Hil85] 

[HJ81] 

[IEH*85] 

[INM] 

[INM84] 

[INM88] 

[ISC87] 

[JD86] 

[JRW86] 

[KEM*78] 

Bibliography 

J. Gregory and RC. McReynolds. The SOLOMON computer. 
IEEE Transactions on Electronic Computers, EC-12:774-81, 
1963. 

J.B. Gosling. Design of Arithmetic Units for Digital Computers. 
Macmillan, London, 1980. 

H.A. Grosch. Grosch's law revisited. Computerworld, 8(16):24, 
April, 1975. 

A. Gottleib and J.T. Schwartz. Networks and Algorithms for 
Very-Large-Scale Parallel Computation. IEEE Computer, 27-
36, January 1982. 

K. Hwang and F .A. Briggs. Computer A rchitecture and Parallel 
Processing. McGraw-Hill, Singapore, 1984. 

W. Daniel Hillis. The Connection Machine. MIT Press, Cam­
bridge, MA, 1985. 

RW. Hockney and C.R Jesshope. Parallel Computers. Adam 
Hilger, Bristol, 1981. 

R.N. Ibbett, D.A. Edwards, T.P. Hopkins, C.K. Cadogan, and 
D.A. Train. Centrenet - A High Performance Local Area Net­
work. Computer Journal, Vol. 28(3):231-242, 1985. 

IMS T800 Architecture, Technical note 6. INMOS Limited, 
Bristol. 

occam Programming Manual. INMOS Limited, UK, 1984. 

occam 2 Reference Manual. Prentice-Hall International, UK, 
1988. 

iSCurrents. Intel Scientific Computers, Fall/Winter 1987. 

T. Johnson and T. Durharn. Parallel Processing: the challenge 
of new computer architectures. Ovum Ltd, London, 1986. 

D. Jurasek, W. Richardson, and D. Wilde. A Multiprocessor 
Design in Custorn VLSI. VLSI Systems Design, 26-30, June 
1986. 

D. Katsuki, E.S. Elsarn, W.F. Mann, E.S. Roberts, J.G. 
Robinson, F.S. Skowronski, and E.W. Wolf. Pluribus­
An Operation al Fault-Tolerant Multiprocessor. Proc. IEEE, 
Vol. 66(10):1146-1159, October 1978. 



www.manaraa.com

Bibliography 197 

[Kle75] 

[Knu73] 

[KS82] 

[Kun82] 

[Law75] 

[Lei85] 

L. Kleinrock. Queueing Systems. Volume 1, Wiley, New York, 
1975. 

D.E. Knuth. The Art 0/ Computer Programming (9 'Vols.). 
Addison-Wesley, Reading, MA., 1973. 

D.J. Kuck and R.A. Stokes. The Burroughs Scientific Processor 
(BSP). IEEE Transactions on Computers, C-31(5):363-376, 
1982. 

H.T. Kung. Why systolic architectures? Computer, 15(1):37-
46,1982. 

D.H. Lawrie. Access and alignment of data in an array proces­
sor. IEEE Transactions on Computers, C-24:1145-1155, 1975. 

C.E. Leiserson. Fat-Trees: Universal Networks for Hardware­
Efficient Supercomputing. In Proc. International Con/erence 
on Parallel Processing, pages 393-402, 1985. 

[Lis88] A.M. Lister. Fundamentals 0/ Operating Systems. Macmillan, 
London, fourth edition, 1988. 

[LM87] G.J. Lipovski and M. Malek. Parallel Computing: theory and 
comparisons. John Wiley & Sons, New York, 1987. 

[MGN79] G.M. Masson, G.C. Ginger, and S. Nakamura. A Sampier 
of Circuit Switching Networks. IEEE Computer, 12(6):32-48, 
1979. 

[MI79] 

[MM82] 

[Mok86] 

[Moo59] 

[OT68] 

D. Morris and R.N. Ibbett. The MUS Computer System. 
Macmillan, London, 1979. 

T.N. Mudge and B.A. Makrucki. Probabilistic Analysis of a 
Crossbar Switch. In Proc. 9th Annual International Symposium 
on Computer Architecture, pages 311-320, 1982. 

N. Mokhoff. Hypercube architecture leads the way for com­
mercial supercomputers in scientific applications. In Computer 
Design, pages 28-30, May 1986. 

E.F. Moore. The shortest path through a maze. In Proceedings 
0/ the International Symposium on the Theory 0/ Switching, 
pages 285-292, 1959. 

D.C. Opfer man and N.T. Tsao-Wu. On a Class of Rearrange­
able Switching Networks, Part I: Control Algorithms, & Part 11: 



www.manaraa.com

198 Bibliography 

Enumeration Studies and Fault Diagnosis. Bell System Tech. 
J., Vol. 50(5):1579-1618, May-June 1968. 

[PBG*85] G.F. Pfister, W.C. Brantley, D.A. George, S.L. Harvey, W.J. 
Kleinfelder, K.P. McAuliffe, E.A. Melton, V.A. Norton, and J. 
Weiss. The IBM Research Parallel Processor Prototype (RP3): 
Introduction and Architecture. In Proc. International Confer­
ence on Parallel Processing, pages 764-771, 1985. 

[Pea77] M.C. Pease. The Indirect Binary n-Cube Microprocessor Array. 
IEEE Transactions on Computers, C-26(5):458-473, May 1977. 

[Per87] R.H. Perrott. Parallel Programming. Addison-Wesley (Interna­
tional Computer Science Series), Wokingham, England, 1987. 

[PN85] G.F. Pfister and V.A. Norton. "Hot-Spot" Contention and 
Combining in Multistage Interconnection Networks. In Proc. 
International Conference on Parallel Processing, pages 790-795, 
1985. 

[Qui87] M.J. Quinn. Designing Efficient Algorithms for Parallel Com­
puters. McGraw-Hill (Computing and Artificial Intelligence Se­
ries), New York, 1987. 

[Red73] S.F. Reddaway. DAP - a distributed array processor. In 1st 
Int. Symp. Comp. Architecture, pages 61-65, 1973. 

[Red79] S.F. Reddaway. The DAP Approach. In C. R. Jesshope and 
R. W. Hockney, editors, Infotech State of the Art Report: Su­
percomputers, pages 311-329, Infotech Intl Ltd, Maidenhead, 
England, 1979. 

[Rob79] J.T. Robinson. Some analysis techniques for asynchronous mul­
tiprocessor algorithms. IEEE Transactions on Software Engi­
neering, SE-5(1):24-31, January 1979. 

[Ros84] A.W. Roseoe. Denotational Semantics for occam. In Proc. 
NSF/SERC workshop on concurrency, LNCS, Springer, 1984. 

[RT86] R. Rettberg and R. Thomas. Contention is no Obstacle 
to Shared-Memory Multiprocessing. Communications of the 
ACM, Vol. 29(12):1202-12, December, 1986. 

[Rus78] R.M. Russell. The CRAY-l Computer System. Communica­
tions of the ACM, 21:63-72, 1978. 



www.manaraa.com

Bibliography 199 

[SB77] H. Sullivan and T.R. Brashkow. A Large Scale Homogeneous 
Machine I & 11. In Proc. 4th Annual International Symposium 
on Computer Architecture, pages 105-124, 1977. 

[SBM62] D.L. Slotnick, W.C. Borck, and R.C. McReynolds. The 
SOLOMON computer. In AFIPS Con/. Proc., pages 97-107, 
1962. 

[SBN82] D. P. Siewiorek, C. G. Bell, and A. Newell. Computer Struc­
tures: Principles and Examples. McGraw-Hill International, 
Japan, 1982. 

[Sei83] C.L. Seitz. Experiments with VLSI Ensemble Machines. Jour­
nal 01 VLSI (3 Computer Systems, 1(4):311-334, 1983. 

[Sei85] C.L. Seitz. The Cosmic Cube. Communications 01 the ACM, 
28(1):22-33, 1985. 

[Sie79] H.J. Siegel. Interconnection Networks for SIMD Machines. 
IEEE Computer, 12(6):57-65, 1979. 

[SM81] H.J. Siegel and R.J. McMillen. The Multistage Cube : A Ver­
satile Interconnection Network. IEEE Computer, 65-76, Dec. 
1981. 

[TMC86] Introduction to Data Level Parallelism. Thinking Machines 
Corporation, technical report 86.14 edition, 1986. 

[Ung58] S.H. Unger. A computer oriented towards spatial problems. In 
Proc. Inst. Radio Eng., pages 1744-50, 1958. 

[Var62] R.S. Varga. Matrix Iterative Analysis. Prentice-Hall, Engle­
wood Cliffs, New Jersey, 1962. 

[VC78] C.R. Vick and J.A. Cornell. PEPE architecture - present and 
future. In AFIPS Con/. Proc, pages 981-1002, 1978. 

[Wak68] A. Waksman. APermutation Network. J. Assoc. Comput. 
Mach., 15:159-163, 1968. 

[WB72] W.A. Wulf and C.G. Bell. C.mmp - A multi-mini-processor. 
Proc. AFIPS Fall Joint Comp. Con/., 41:765-777, 1972. 

[WBB*87] W.W. Wilcke, R.C. Booth, D.A. Brown, D.G. Shea, F.T. Tong, 
and D. Zukowski. Design and Application 01 an Experimen­
tal Multiprocessor. Technical Report RC 12604, IBM Research 
Division, March 1987. 



www.manaraa.com

200 Bibliography 

[WH78] W. Wulf and S.P. Harbison. Reftections in a Pool of Processors: 
An Experience Report on C.mmp. In Proc AFIPS NCC, 1978. 

[Whi85] C. Whitby-Strevens. The transputer. In Proc. lfUh Annual 
International Symposium on Computer Architecture, pages 292-
300, 1985. 

[Wid80] L.C. Widdoes Jr. The S-1 Project: Developing High­
Performance Digital Computers. IEEE Compcon '80, 282-291, 
Spring 1980. 

[WKI86] T. Watanabe, H. Katayama, and A. Iwaya. Introduction of 
the NEC Supercomputer SX System. In S. Fernbach, editor, 
Supercomputers: CLass VI Systems, Hardware and Software, 
pages 153-168, North-Holland, Amsterdam, 1986. 



www.manaraa.com

Index 

access permissions, 45 
active data structures, 59 
Active Memory Technology, 57 
activity bits, 48 
Actus, 67 
Ada, 170-174 

application of, 177 
nondeterminism, 173 
packages, 170 
rendezvous, 172 
tasks, 170 

adaptive routing, 64 
addressing: 

BBN Butterfly, 129 
in CM-1, 61 
in CM-1 network, 63 
in networks, 24 
in transputers, 147, 152 
predictability of, 83 

ADI,76 
algorithms, 73-81 
alpha notation, 71 
ALT, 175 
alternating direction implicit, see 

ADI 
Alvey ParSiFal project, 160 
AMD 2901, 128 
Amdahl's Law, 83 
ANSI MIL-STD-1815, 170 
application: 

characterisation, 92-94 
of array processors, 73-81 
of multiprocessors, 177-191 

arbitrary permutations, 36 
arithmetic permutations, 28 
arithmetic: 

201 

bit-parallel, 49 
bit-serial, 48-49 
performance of DAP, 56 

ARPANET, 127 
array processor organisation, 8-11 
array processors: 

algorithms for, 73-81 
control mechanisms, 8 
control of ILLIAC IV, 11 
design issues, 7-8 
languages, 67-72 
performance issues, 15-21 
scalability of, 20 

asymmetry of tasks, 173 
asynchronous networks, 23 
Augusta Ada, 170 
average down time, 106 
average vector length, 18 

backplanes, 61 
banyan network, 39 
Batcher's bi tonic merge, 178 
BBN Butterfly, 40, 127-140, 173, 

185 
processing nodes, 128-129 
the switch, 130-132 

Beneii network, 36-37, 38, 40 
beta reduction, 64,71-72, 73 
binary k-cube, 33, 96, 159 
bipartite graphs, 25, 28 
bit vectors, 48 
bit-parallel word-serial, 16 
bit-serial processing, 16 
bit-serial word-parallel, 48 
blocking networks, 40, 64, 131 
boolean processors, 48 



www.manaraa.com

202 

Briggs F .A., 94 
BSP macro-pipeline, 13 
Burroughs Scientific Processor, 11, 

12-15, 21 
bus-connected multiprocessors, 111-

115 
butterfly permutation, 27-28, 38 
Butterfly switch, 127 

C.mmp, 122-127 
CDC 6600, 2, 4 
CDC 7600, 2, 4, 12 
chain network, 31 
Charles Babbage, 170 
Chebychev acceleration, 76 
chequer board algorithm, 76 
chordal ring network, 11, 32 
circuit switching, 23 
CM-Lisp, ~. 67, 70-72, 79 

alpha notation, 7.L 
beta reduction, 71-72 

CMOS, 60, 148 
coarse-grain processes, 89 
column highway, 45 
combining switches, 141 
communication overheads, 143 
comparing architectures, 18 
completely connected networks, 32 
complexity of hardware, 105 
conflict resolution, 24, 65 

shared bus systems, 113 
Connection Machine, 21, 58-66 

alpha notation, 71 
beta reduction, 71-72 
CM-Lisp,70-72 
design philosophy, 58-59 
hypercube network, 62-66 
message format, 63 
network performance, 65-66 
physical construction, 61 
pin-boundedness, 105 
processing elements, 61-62 
programming, 70-72 

Index 

routing algorithm, 63 
system architecture, 59-61 
technology, 60 

context-switch time, 95, 174 
in transputers, 155 

control point, 58 
control vectors, 11, 68 
Cosmic Cube, 35, 165 
cosmic radiation, 106 
cost/performance: 

c.f. Grosch's Law, 85 
CRAY-1S v. Butterfly, 85 

Cray Seymour, 44 
CRAY X-MP, 84 
CRAY-1, 4,15,18,55,69,85,165, 

169 
CRAY-2,84 
CRAY-3,84 
cross-bar switch, 5, 15, 22, 30, 36, 

164 
cost of, 22, 104 
rollting function, 30 

cross-point calculation, 77 
CYBER 205, 4, 15, 18, 56, 69, 85, 

169 
cyde-stealing, 44, 144 
cydic arrays, 7 
cydic geometry, 69 

DAP,43-58 
array unit, 45-48 
bit-serial mode, 48 
boundary geometry, 53, 69 
dock period, 53 
comparative speed, 51 
control vectors, 68 
data-shift instructions, 53 
Fortran, 67,68-70 
historical significance, 21 
host interface, 47 
instruction buffer, 48 
instruction set, 50-53 
loop-catching, 48 



www.manaraa.com

Index 

memory structure, 47 
performance, 17, 53-57 
processing elements, 48-50 
registers, 45 
system architecture, 44-45 

DAP-3, 57, 68 
DARPA, 127 
data alignment, 73 
data sharing, 109 
data-forwarding, 58 
data-Ievel parallelism, 44, 66, 67, 

73,89 
dataflow architectures, 94, 95 
decision time, 95, 174 
decomposition, 70, 73 
decomposition of tasks, 181 
dependencies, 93, 94 
direct methods, 76 
distributed memory: 

in array processors, 9 
in CM-l, 60 
in ILLIAC IV, 11 
in the DAP, 53 
multiprocessors, 88 

DO loop, 51 
dynamic networks: 

banyan, 39 
characteristics, 31 
general, 35-36 
indirect binary n-cube, 40 
multistage cube, 40 
omega, 39 

ECL, 163 
efficiency: 

MIMD models, 96-104 
of beta reduction, 74 
of process placement, 190 
of SIMD systems, 20 
prediction of, 177 

Encore: 
Multimax, 112 
Ultramax, 140 

environment al factors, 106 
ERDA Class IV, 85 

203 

ESPRIT Supernode project, 160 
ETA lO , 84,85 
Ethernet, 166 
exchange permutation, 26-27, 33 

fan-out, 21 
fault diagnosis, 106 
fault tolerance: 

in networks, 64 
fault-tolerance, 105-108 
fine-grained processes, 89, 92, 97, 

174 
finite difference methods, 75 
ftow-dependence, 99 
Flynn limit, 83 
Flynn M.J., 3 
Fortran, 51 

DAP, 68-70 
matrices, 68 
vectors,68 

FPS T / 40000, 167 
full connection networks, 40, 111 

gain equation, 104 
systolic multiplication, 191 

Gantt charts, 97 
general exchange switch, 37, 38 
GFll, 41, 107 
Goodyear Aerospace STARAN, see 

STARAN 
granular efficiency, 97, 104, 143, 

190 
granularity, 73, 89, 92, 177 

effect on performance, 103 
in transputers, 152 

graph algorithms, 79 
Grosch's Law, 85 
guarded commands, 175 

Honeywell Bull, 170 
Hwang K., 94 



www.manaraa.com

204 

hybrid switching, 23 
hypercube: 

bandwidth, 34 
complexity, 34 
multiprocessors, 165-167 
networks, 33 
routing functions, 33 

IBM: 
GF11, 41, 107 
RP3, 140, 141, 185 
System/360, 4, 58 
System/370, 4 
VICTOR,l60 

ICL: 
2900,43 
DAP, 16 

identity permutation, 29, 33, 132 
ILLIAC IV, 11-12, 21, 32, 49 
indirect binary n~cube network, 40 
indirect methods, 76 
INMOS links, 155 
instantaneous parallelism, 93 
instruction buffering, 48 
instruction issue logic, 84 
instruction sets: 

DAP, 50-53 
transputer, 148-153 

integration, 43 
Intel 8086, 165 
inter-process communication, 169 
interconnection networks, 22-41, 

84 
as graph structures, 23, 29 
BBN Butterfly switch, 130-132 
Connection Machine, 59 
design of, 23 
for array processors, 23 
for MIMD systems, 86, 111 
for multiprocessors, 23 
in SIMD systems, 9 
loading,88 
operating mode, 23 

redundancy, 107 
routing algorithms, 41 
switching method, 23 

Index 

the ILLIAC IV network, 12 
interleaved memory, 8, 14 
IP-1, 115 
iPSC, 165 

Jacobi's method, 76 

Kleinrock L., 192 
Kung H.T., 186 

languages: 
Ada, 170-174 
for array processors, 67-72 
for multiprocessors, 169-177 
Occam, 175-177 

latency, 95, 144 
in the Butterfly, 129 
sensitivity to, 96, 99 
tolerance of, 96, 99 

least-recently-used, 113 
linear second-order PDEs, 75 
Lipovski G.J., 105 
Lisp, 59 
load balancing, 90, 97 
loci of control, 84 
Lockheed SUE processors, 115 
lockstep arrays, 7, 11 
logic-in-memory machines, 59 
loop-catching, 48, 51 
lower-broadcast, 37 

M-SIMD machines, 84, 85 
Makrucki B.A, 137 
Malek M., 105 
matrix multiplication in parallel, 

185-191 
MCU registers, 45 
mean time between failures, 106 
Meiko Computing Surface, 160-165, 

189 
board library, 161-164 



www.manaraa.com

Index 

supervisor bus, 161 
memory access conflicts, 14 
Memphis Switch, 41, see GFll 
message transfer system, 142 
message-passing, 141 
message-passing systems: 

design issues, 143-145 
hypercube architectures, 165-

167 
multiprocessors, 89 
process placement, 144 
taxonomy, 145 

microcode, 151 
microprocessor revolution, 21 
MIMD architectures, 4 
MIMD network requirements, 24 
MIMD performance models, 91-

108 
MIMD performance: 

Butterfly switch, 132-140 
latency limitations, 95 
realistic, 103 
realistic gain, 104 
speedup bounds, 102 

MIMD systems: 
categorisation, 88-89 
context-switch time, 95 
decision time, 95 
design issues, 86-91 
fault-tolerance, 105-108 
granularity of, 89 
interconnection problem, 86 
justification, 84 
latency of, 95 
message-passing, 89, 143-145 
reliability, 105-108 

minimum path length, 79-81 
MISD architectures, 4 
model problem, 76 
modular programming, 170 
Moore's algorithm, 79 
Mosaic, 35 

Motorola: 
M68000, 128, 130 
M68020, 128 
M88100, 2, 173 

MPP, 21, 61 
MTBF, 106 
MU5 Exchange, 112 
Mudge T.N., 137 

205 

multi-stage networks, 35, 36-41, 
116 

multiprocessor granularity, 89 
multi processors: 

algorithms, 177-191 
c.f. multicomputers, 84 
languages, 169-177 

multiprogramming, 90, 142 
multiprogramming overheads, 103 
multistage cube network, 40 
MUSS, 144 

naming conventions, 142 
NCUBE/I0, 166 

pin-boundedness, 105 
near-neighbour grid, 46, 60, 158 
NEC SX Series, 15 
network addressing, 24 
network characteristics, 23-24 
network connectivity, 165 

full,22 
of transputer systems, 158 
partial, 22 

network contention, 64 
network control mechanisms, 40-

41 
network control signals, 23 
network links, 23 
network nodes, 23 
network performance, 65-66 
network topology, 29-41, 79 

BBN Butterfly switch, 130 
boundary connections, 11, 53 
of CM-l, 62-66 
of DAP, 69 



www.manaraa.com

206 

ring-structured, 30 
ternary trees, 159 

NEWS grid, 60, 62, 74, 78, 186 
nondeterminism, 98, 173 
novel architectures, 84, 94 
NYU Ultracomputer, 140, 141 

Occam, 146, 175-177 
application of, 177, 185 
channels, 147, 177 
harness processes, 189 
primitive processes, 175 

omega network, 39 
operating systems, 113 
order statistics, 189 

packet survival rate, 136 
packet switching, 23, 112 

in CM-1, 60 
PAR, 175 
parallel algorithms: 

design of, 87 
for multiprocessors, 177-191 
matrix multiplication, 185-191 
sorting, 178-185 

parallel data structures, 67 
parallel functional units, 2, 83 
parallel systems: 

predicted market growth, 2 
from transputers, 158-160 
MIMD characteristics, 95-96 

parallelism: 
data-Ievel, 44, 67, 73, 89 
explicit, 169 
in CM-1, 59 
in CM-Lisp, 71, 81 
in data structures, 67 
in hardware, 2-3 
in SIMD languages, 67-72 
in SIMD systems, 20 
instantaneous, 93 
matching h/w & s/w, 86 
MIMD gain, 104 

Index 

profiles, 93, 97 
static v. dynamic, 90, 91 
taxonomy of, 3-4 

PARSYS SN1000, 189 
partial differential equations, 75-

79 
Pascal, 67, 170 
PCB routing, 81 
PDP-ll,112 
PEPE,21 
perfect-shufHe permutation, 25-26 
performance: 

Butterfly switch, 132-140 
cross-bar switches, 137 
MIMD potential, 84 
models, 16-19 
of communication, 89 
of MIMD systems, 91-108 
transputer communications, 155 

permutations, 23, 25, 62 
arbitrary, 36 
BBN Butterfly switch, 131-132 
bu tterfly, 27, 38 
exchange, 26, 135 
identity, 29 
perfect-shufHe, 25 
shift, 28, 30, 31 
transputer networks, 159 

Perrot R.H., 87 
petit cycles, 64, 65 
pipelining, 58, 83 
planar geometry, 69 
Pluribus, 115, 127, 127 
PMS, 4 
portability , 67 
precedence relations, 182 
process migration, 90, 145 
process placement, 144, 189 
process replication, 176 
process scheduling, 90 
process synchronisation, 109 
processing elements: 



www.manaraa.com

Index 

BBN Butterfly, 128-129 
bollean, 61 
boolean,48 
BSP arithmetic units, 12 
in Connection Machine, 61-62 
in MIMD systems, 86 
in the DAP, 48-50 
sequential, 85 

quantum chromodynamics, 107 
queueing models, 184 
Quicksort, 178 
Quinn M.J., 87 

real-time response, 91 
recirculating networks, 35 
rectangular mesh network, 31 
recursive divide-and-conquer, 181 
reliability, 105-108 
rendezvous, 172 
resilience, 106 
ring network, 31 
RISC architecture, 151, 179 
routing conflicts, 65 
routing: 

in Butterfly switch, 131 
algorithm complexity, 41 
cause of conflicts, 24 
conflicts, 24, 40, 64, 134 
functions, 23, 24-29, 25 
in CM-1 network, 63 
solution to conflicts, 138 

row highway, 45 
RP3 project, 140, 141, 185 

scalability: 
of array processors, 20 
of hypercubes, 35 
of MIMD systems, 104-105 
sequential limitations to, 86 
shared bus systems, 114 

scalable multiprocessors, 116 
scheduling of processes, 97 

scoreboard, 2 
SECDED,107 
Seitz C.L., 165 
self-routing networks, 41 
semaphores, 88 
SEQ,175 

207 

Sequent Balance 8000, 112, 116-
122, 173 

sequential processors, 85 
shared bus structures, 31, 36 
shared-memory: 

bandwidth problems, 141 
BSP memory-modules, 12 
cost of, 15 
DAP-host, 44 
in array processors, 9 
MIMD design issues, 109-116 
multiprocessor systems, 88 

shared-variables, 89 
shift permutation, 28-29, 30, 31 
shuffie permutation, 132 
shuffie-exchange networks, 38-40 
SIGRAPH Conference, 160 
silicon, 1 
SIMD architectures, 4 
SIMD language features, 68 
SIMD network requirements, 24 
SIMD performance: 

DAP performance, 17 
efficiency bounds, 18-19 
performance models, 16-19 
raw performance, 17 
realistic, 18 
space-time diagrams, 18 
throughput equations, 16 
two-state machines, 18 
utilisation equations, 16 

single-bit processors, 48 
single-chip processors, 2 
single-stage networks, 35 
SISD architectures, 4 
software: 



www.manaraa.com

208 

for array processors, 73-81 
SOLOMON, 21, 43 
SOR, 76 
sorting in parallel, 178-185 
space-time diagrams, 97 
speed-of-light, 84 
speedup: 

absolute, 177 
best-case MIMD, 100-101 
defined by Amdahl's Law, 83 
in SIMD systems, 20 
in SISD systems, 83 
linearity, 85 
MIMD model, 96-104 
Minsky's conjecture, 85 
realistic figures, 103 
superlinear , 108 
through parallelism, 92 
worst-case MIMD, 99-100 

spin-lock, 114 
square-mesh network, 53 
Stanford S-l, 115 
star network, 31, 112 
STARAN, 21,61 
state multiplexed architectures, 96 
state-transition diagram, 184 
static networks: 

characteristics, 30 
chordal ring, 32 
completely connected, 32 
general, 31-35 
rectangular mesh, 31 
ring network, 31 
star network, 31, 112 
the chain, 31 
three-cube, 32 
topology, 31 
tree networks, 31 

static state architectures, 96 
store-and-forward, 64 
structural notation, 4 
sub-shuffie permutation, 26 

Index 

successive over-relaxation, 76 
super-linear speedup, 108 
super-shuffie permutation, 26 
switch de-rating, 138 
switching nodes, 23 
switching radix, 138 
symbolic algorithms, 79 
synchronisation, 21 

via shared-memory, 88 
synchronous networks, 23 
systolic arrays, 186 

T414 transputer, 147-156 
T800 transputer, 156-158 
task graphs, 183 
taxonomy: 

in general, 3-4 
message-passing systems, 145 
of MIMD systems, 88-89 

telephone networks, 24 
templates, 13 
ternary trees, 159 
Texas Instruments ASC, 53 
three-cube network, 32 
time-sharing, 92 
transmission delays: 

BBN Butterfly switch, 130 
in hypercubes, 34 
INMOS links, 156 
SIMD clock speed, 21 
the ILLIAC IV clock problem, 

11 
transputer, 144, 146-165 

configurable arrays, 159 
instruction format, 150 
instruction set, 148-153 
memory interface, 152 
performance, 147, 154-156 

tree networks, 31 
triple-modular-redundancy, 107 

upper-broadcast, 37 
utilisation: 



www.manaraa.com

Index 

without multiprogramming, 91 

variation in parallelism, 93 
VAX 11/780, 165 
vector efficiency, 97 
vector registers, 58 
vectorisation, 18, 69, 83, 169 
virtual memory, 44, 91 
virtual processors, 142 
virtual store interrupts, 91 
VLSI: 

Computing Surface switches, 
161 

NCUBE implementation, 166 
technological push, 86 
the transputer, 146 

von Neumann bottleneck, 66, 83 

wait-time, 141 
Whetstones, 157 
wiring cost, 105 
word-parallel bit-serial, 16, 48 
working-set model, 91 
workload, 90 
workstations, 92 

Xectors, 10, 81 
XREF,71 

209 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
    /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU <FEFF000d000d004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice




